Application Examples

This page lists application examples for PLECS, the RT Box and Embedded Code Generation. Before opening a model for the RT Box or for Embedded Code Generation in PLECS, please install the corresponding target support packages (RT Box, TI C2000). The .zip files contain models for both PLECS Blockset and Standalone.

The filters below will help you navigate through the collection of application examples.

Title Description Files PDF Video
PLECS: Boost Converter with PFC and Thermal Model

This demonstration shows a 300 W switched-mode power supply with a thermal model for the PFC and rectifier stages. The AC input voltage may vary between 85 and 265 Vrms and the controlled output voltage is 390 V DC. The simulation combines the electrical power circuit, the control with a standard IC and the thermal behavior of the semiconductors. Component loss descriptions are included to allow the thermal behavior of the MOSFET, boost diode and full bridge rectifier to be investigated. A Steady-State Analysis is also setup to determine the final operating temperatures within seconds.

Tags: #Thermal, #Controls, #Tools, #Power-Supplies

-
PLECS: Buck Converter with Analysis Tools

This demonstration shows how to perform a Steady-State Analysis and use small-signal analysis to obtain different open-loop transfer functions for an unregulated buck converter. The transfer function can be calculated by performing an AC Sweep or Impulse Response Analysis, which both inherently first execute a Steady-State Analysis, or alternatively, using the Multitone Analysis, which does not execute a Steady-State Analysis.

Tags:
#Controls, #Tools
#Power-Supplies

PLECS: Buck Converter with Constant On-Time Control

The demonstration shows a buck converter with cascaded voltage and current controller. The current control is based on a constant on-time and implemented using the PLECS State Machine block.

Tags:
#Controls, #Tools
#Power-Supplies

PLECS: Buck Converter with Digital Controls

This demonstration shows a buck converter with a digital controller implementation. The controller block uses a configurable subsystem that can be toggled between a continuous and discrete proportional integral derivative (PID) control scheme. By looking under the mask (Ctrl+U) of the PID Controller block, two further masked subsystems contain the S- and Z-domain controllers.

Tags:
#Controls, #Tools
#Power-Supplies

-
PLECS: Buck Converter with Loop Gain Analysis

This demonstration shows how to obtain the loop gain of a voltage-regulated buck converter with a resistive load. This can be done by performing an AC Sweep Analysis, which inherently first executes a Steady-State Analysis, or alternatively, using Multitone Analysis, which does not execute a Steady- State Analysis.

Tags:
#Controls, #Tools
#Power-Supplies

-
PLECS: Buck Converter with Parameter Sweep

This demonstration is based on the demo model "Buck Converter with Analog Controls" in the PLECS demo models library. It performs a sweep of the inductor value in a simulation script. This demo model is particularly useful to implement any kind of parameter sweep in other models as the basic structure serves as a good starting point.

Tags:
#Controls, #Tools
#Power-Supplies

PLECS: Buck Converter with Peak Current Control

This demonstration shows a current-controlled buck converter with a resistive load. The PLECS Peak Current Controller block is used to implement peak current mode control and a voltage control loop is provided in both analog and digital implementations.

Tags:
#Controls, #Tools
#Power-Supplies

-
PLECS: Buck Converter with Thermal Model

This demonstration shows a simple unregulated buck converter including a basic thermal model. Blocks from the PLECS thermal domain are used to calculate the switching and conduction losses of the IGBT and diode, as well as model the thermal impedance network between device junctions and ambient environment. Control domain blocks are then used to calculate the component loss information and converter efficiency.

Tags: #Thermal, #Tools, #Basic-Topologies

PLECS: Current Controller Design for Motor Drives

This demonstration shows how to obtain the loop-gain of a current-controlled, three-phase drive system using the PLECS Multitone Analysis Tool. The calculations of the PI current controller parameters based on specifications of the crossover frequency and required phase margin are shown in detail.

Tags:
Choose from #Controls, #Tools
Choose from #Motor-Drives

-
PLECS: Frequency Response of Passive Circuit

This demonstration shows how to generate the frequency response of a non-switched network. In this example, a Bode plot is produced for a first-order RC network, specifically with the behavior of a low pass filter. For PLECS Standalone a Simulation Script is included where a parameter sweep can be executed for various values of the passive components to quickly optimize a filter network design.

Tags: #Tools, #Basic-Topologies

-
PLECS: Half-Bridge LLC Converter with Analysis Tools

This demonstration shows a half-bridge LLC resonant converter operated with open-loop and closed-loop frequency control using a voltage-controlled oscillator (VCO). Further, Multitone Analysis is used in the open-loop system to design the compensator and to check the stability of the closed-loop system.

Tags: #Controls, #Tools, #Power-Supplies

PLECS: Inverter with C-Script-Based PWM Modulator

This demonstration shows an ideal MOSFET inverter that is controlled by a custom PWM scheme. The modulation logic is implemented as a state machine using the PLECS C-Script block. Minimum switch on-time and dead time parameters can be configured for observing timing effects on the simulated waveforms.

Tags: #Controls, #Tools, #Power-Supplies

PLECS: Phase Shift DC-DC Converter with Integrated Magnetics

This demonstration shows a phase shift DC-DC converter with a magnetically integrated current doubler. The combined transformer and output inductors are implemented in the PLECS Magnetic Domain. Thermal descriptions are assigned to the MOSFET switches in the full bridge as well as the output diodes so that junction temperatures and losses can be monitored.

Tags: #Thermal, #Magnetics, #Controls, #Tools, #Power-Supplies

-
PLECS: Plant Code Generation: Three-Phase 6-Pulse Thyristor Converter

This example demonstrates PLECS Standalone code generation capabilities for physical systems including electrical circuits. In this model ANSI-C code is generated to represent a three-phase thyristor (SCR) rectifier circuit. The model performance using generated C code is benchmarked against the baseline system using native PLECS components. Code generation for physical systems is essential to model physical plants in a real-time simulation environment, such as with the RT Box family of simulators. Please note that in order to enable code generation and run this simulation, you will need a PLECS Coder license.

Tags: #Tools, #Power-Supplies

-
PLECS: Power Supply Compensator Analysis

This demonstration analyzes the performance of Type 2 and Type 3 analog compensators used in power supply units (PSUs). The analyzed PSU is a buck converter with modeled-in inductor and capacitor non-idealities. The role of the capacitor and its effective series resistance (ESR) on the plant zero and poles is discussed. Furthermore, the compensators’ performance is analyzed with respect to the phase margin, system bandwidth, and rate of change in gain at the cross-over frequency, using the PLECS Analysis Tools.

Tags: #Controls, #Tools, #Power-Supplies

-
PLECS: Rainflow Counting and Lifetime Prediction

This demonstration shows a rainflow counting algorithm that predicts the lifetime of semiconductor devices in a direct torque-controlled (DTC) motor drive under different load conditions. The calculation is based on the temperature profile of the power semiconductors from a transient electro-thermal simulation.

Tags:
Choose from #Thermal, #Controls, #Tools
Choose from #Motor-Drives

-
PLECS: Single-Phase PV Inverter

Single-phase PV inverters are commonly used in residential rooftop PV systems. In this application example, a single-phase, single-stage, grid-connected PV inverter is modeled. The PV system includes an accurate PV string model that has a peak output power of 3 kW.

Tags: #Controls, #Tools, #Power-Generation

-
PLECS: Space Vector Control of a Boost System

This example model demonstrates space vector control of a three-phase boost-type rectifier. The Space Vector PWM block included with PLECS is implemented using a C-Script block. The code-based implementation can be viewed to study the definition of the switching matrices, reference vector magnitude and angle calculations, sector detection logic, and calculation of relative on-times.

Tags: #Controls, #Tools, #Power-Supplies

-
PLECS: Three-Phase T-Type Inverter

This demonstration presents a three-phase T-type inverter for grid-tie applications with thermal descriptions of SiC MOSFETs included. This model exhibits how the device selection, controller parameters, and modulation approach influence the thermal performance of the inverter. By leveraging analysis tools and simulation scripts, the inverter performance is studied under several different operating conditions to ensure the system behaves safely and efficiently.

Tags: #Thermal, #Controls, #Tools, #Power-Supplies

PLECS: Z-Source Inverter

This demonstration shows a current-controlled three-phase Z-source inverter used in a fuel-cell application. The unique impedance network in the Z-source inverter allows the inverter to be operated in both buck and boost modes. The model includes a continuous current controller that was tuned analytically using the K-factor method, and a modulator implemented with the PLECS State Machine block.

Tags: #Controls, #Tools, #Power-Supplies

-