Plegs

THE SIMULATION PLATFORM FOR
POWER ELECTRONIC SYSTEMS

STM32 Target Support User Manual Version 1.4

How to Contact Plexim:

+41 44 533 51 00 Phone
+41 44 533 51 01 Fax
Plexim GmbH Mail

Technoparkstrasse 1
8005 Ziirich

Switzerland
info@plexim.com Email
http://www.plexim.com Web

STM32 Target Support User Manual
© 2023 by Plexim GmbH

The product described in this manual is furnished under a license agreement.
The software may be used or copied only under the terms of the license agree-
ment. No part of this manual may be photocopied or reproduced in any form
without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their re-
spective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii
1 Quick Start 3
Requirements e 3
Installing the Target Support Package 3
Build and Deploy Generated Code 4
Program the MCU from PLECS 4
Program the MCU from STM32CubelDE 5

Start the External Mode 7

2 Target Support Architecture 11
OVEIVIEW . . . ettt e e e e e e e e 11
The Embedded Code Generation Workflow 11
Control Task Execution 12
Control Task Accuracy and PWM Frequency Tolerance 13
Explicit and Implicit Trigger Definitions 14

The Code Generation Project 22

3 STM32 Coder Options 25
General 25

Task Scheduler 27
Protection 27

External Mode 28

Contents

4 STM32 Target Support Library Component Reference 31
AnalogIn e 32
Analog In (Triggered) i i 34
Base Task Load 36
CAN Port e 37
CAN Receive oo e e 40
CAN Transmit e 42
Control Task Trigger i 44
DAC . . . 45
Digital In e 46
Digital Out e 47
Edge Counter e 48
External Sync e 51
HRTIM Master it et e e e e e e 52
HRTIM Timing Unit 55
Override Probe e 62
Peak Current Controller 63
Powerstage Protection 67
Pulse Capture e 72
PWM . . e 75
Quadrature Encoder Counter (QEP) 80
Read Probe 83
SINCOS . . o v e e e 84
SPIMaster e e e 85
SPISlave e 90
Timer e 93

Contents

Quick Start

Requirements

The PLECS STM32 Target Support Package currently supports the
STM32G431 and STM32G474 microprocessors from the STM32G4x tar-
get family, and the STM32F334 and STM32F303 microprocessors from the
STM32F3x family.

In order to use the PLECS STM32 Target Support Package you will
need:

¢ a host computer (with Microsoft Windows or Mac OS X)
e PLECS Blockset or Standalone 4.7.5 or newer
e PLECS Coder

If you have not done so yet, please download and install the latest PLECS re-
lease on your host computer.

Installing the Target Support Package

Download the appropriate ZIP archive or disk image from the web page
https://www.plexim.com/download/tsp_stm32, extract it and move the stm32
folder to the PLECS Coder target support packages path e.g. to HOME/Docu-
ments/PLECS/CoderTargets. In PLECS, choose Preferences... from the File
drop-down menu (PLECS menu on Mac OS X) to open the PLECS Prefer-
ences dialog.

Navigate to the Coder tab and click on the Change button to select the
HOME /Documents/PLECS/CoderTargets folder. The targets included as part
of the STM32 Target Support Package should now be listed under Installed

https://www.plexim.com/download/tsp_stm32/

l Quick Start

targets. You will also see these targets available in the Coder + Coder op-
tions... window in the drop-down menu on the Target tab.

Another folder labeled projects is included in the ZIP archive. The contents
of this folder is required only when the PLECS Coder is configured to generate
code into STM32CubelDE projects. The projects/stm32xx.zip files contain
Cube IDE projects that are used in conjunction with the embedded code gener-
ated from PLECS.

A set of basic demos is also included with the STM32 Target Support Package.

Build and Deploy Generated Code

There are two primary methods for building and deploying generated embed-
ded code onto a STM32 MCU.

1 Build and program the MCU from PLECS You can directly program the
target device from the PLECS application. This approach does not require
any external tools, although, optionally, the Segger J-Link package can be
used in this workflow. Clicking Build in the Coder Options dialog gener-
ates model and supporting hardware configuration code, builds the applica-
tion using the ARM GCC tools, and then flashes the target via Open OCD
(or J-Link).

2 Build and program the MCU from the STM32CubeIDE In this ap-
proach the PLECS Coder generates code for the specified target into a tem-
plate Cube IDE project. The Cube IDE is then used to build the project and
flash the target device. The advantage of this method is that the generated
code can easily be inspected. Further, the developer has access to debugging
tools.

If the required software is installed on your PC you can easily switch between
the two methods by checking or unchecking the Generate code only parame-
ter in the Coder options... + Target + General menu.

Program the MCU from PLECS

PLECS can automatically program the target MCU after it finishes generat-
ing and building code. Programming occurs over the GNU debug protocol and
requires a GDB server.

Two options exist:

Build and Deploy Generated Code

1 Open OCD The STM32 Target Support Package includes the Open On-Chip
Debugger package and GDB server, supporting the ST-LINK debug link out
of the box (no external tools needed).

2 Segger J-Link Segger debug probes offer superior throughput and are also
supported by the STM32 Target Support Package — see below on how to in-
stall the Segger tools.

Note that the debug link can also be used in PLECS External Mode to com-
municate with the target while it is executing the generated code. It is in Ex-
ternal Mode that the high throughput of J-Link is most noticeable.

Configuring Segger J-Link Tools

The Segger J-Link tools must be downloaded and installed separately.

To configure the PLECS Coder to use the Segger tools, select Preferences...
from the File drop-down menu (PLECS menu on Mac OS X) to open the
PLECS Preferences dialog. Click the Coder tab to see the installed targets.
Click the 7 icon in the Family column next to the STM32 entry and enter
the path to the J-Link installation (e.g. /Applications/SEGGER/JLink).

Deploy code to STM32 target from PLECS
To deploy code to a STM32 target from PLECS, navigate to the PLECS Coder
Options + Target window, select the target MCU. Uncheck the Generate

code only parameter, then choose the desired Programming interface from
the dropdown menu. The default programming interface is Open 0OCD.

Program the MCU from STM32CubelDE
Configure STM32CubelDE

Download and install the latest version of STM32CubeIDE from the STM
website. This is available at the following location:

https://www.st.com/en/development-tools/stm32cubeide.html
After installing STM32CubelDE, import the appropriate template project

from the STM32 Target Support Package. Open STM32CubelDE and click the
File drop-down menu and then select Import.... From General + Existing

https://sourceforge.net/projects/openocd/
https://sourceforge.net/projects/openocd/
https://www.st.com/en/development-tools/stm32cubeide.html

l Quick Start

O [] PLECS Preferences

General Libraries Thermal Scope Colors Updates m

Target support packages path

/Users/Plexim/Coder_Targets ange

Installed targets

Name Version Family Package
PLECSRT Box1 2.0
PLECSRTBox2 2.0 PLECS RT Box PLECS_RT_Box
PLECSRTBox3 2.0

STM32G4x 1.0] STM32 stm32-target-support
TI2806x 123

TI28004x 123 > .

[Z] TIC2000 tsp_ti_c2000
TI2833x 123
TI2837xS 1.2.3
Rescan
Help Apply Cancel OK

Figure 1.1: Configuring the target support package and external tool paths

Projects into Workspace, choose the zip archive in the projects folder that
corresponds to the desired target. You will notice a new project created in your
workspace.

Deploy code from STM32CubelDE

Return to the PLECS application, navigate to the Coder + Coder Options...
window and select the Target tab. Check the Generate code only parame-
ter checkbox. Enter the location of the ${workspace_loc}/cube_g4xx/cg or
${workspace_loc}/cube_ f3xx/cg folder from the STM32CubelDE project

Start the External Mode

into the STM32CubelDE project directory field and click Build. Note
that {workspace_loc} refers to the location of the imported project in the
STM32CubelDE workspace. You will notice several new files created in the
${workspace_loc}/cube g4xx/cg or ${workspace_loc}/cube_ f3xx/cg direc-
tory. Then, proceed to build and debug your project as you would a normal
STM32CubelDE project. The project will not compile without first generating
code from PLECS.

Note that it is necessary to manually delete the contents of the
${workspace_loc}/cube_g4xx/cg or ${workspace_loc}/cube_ f3xx/cg
folder when generating code for a new subsystem of a different name, as the
STM32CubelDE builder will build all files in this folder, including old files.

Start the External Mode

Once the generated code is running on the embedded target, the user can en-
ter the External Mode to update Scopes in the PLECS application with real-
time waveforms and change certain simulation parameters.

External mode can be configured to run over JTAG or Serial. This choice must
be configured from the Coder + Coder options...+Target + External Mode
window prior to building the project.

To establish a communication link over JTAG with your target, follow the in-
structions provided below:

* Open the Coder options... + External Mode tab and then select the ./*
icon next to the Target device field.

¢ Select Serial over GDB, configure the device name to 127.0.0.1 and then
click the OK button to proceed.

¢ Click the Connect button and if the connection is successful you will see
the trigger controls activate.

¢ Set the Number of samples parameter to e.g. 1000 and click on the Acti-
vate autotriggering button.

To establish a communication link over Serial with your target, first config-
ure the proper USART channels from the Coder + Coder options...+Target
+ External Mode window. Then, Scan for the appropriate Target device

and proceed to Connect to the target as described in the instructions above.

You will now see real-time data from the MCU in the PLECS Scopes. You can
synchronize the data capture to a specific trigger event. To do so, change the
Trigger channel selection from Off to the desired signal. The Scope will now

l Quick Start

show a small square indicating the trigger level and delay. If the level or de-
lay are outside the current axes limits, a small triangle will be shown instead.
Drag the trigger icon to change the trigger level; drag it with the left mouse-
button pressed to change the trigger delay. Both parameters can also be set in
the External Mode dialog.

Note While a trigger channel is active, the Scope signals are only updated
when a trigger event is detected.

While the PLECS model is connected via the External Mode, the model is
locked against modifications. To disconnect from the MCU and other External
Mode connections, click on the Disconnect button or close the Coder Options
dialog.

Parameter Inlining

Certain values on the target device can be changed in real-time, when con-
nected to the target device via the External Mode, if the component is added
to the "Exceptions" list found in the Parameter Inlining tab of the Coder
options... window, prior to building the model. Changes in the parameters
will be reflected in the Scope traces once they take effect.

Connecting the external mode to several targets

External mode can be connected to several targets at the same time. When
using external mode over Serial each target can be identified by the Device
names. When the External mode is established via JTAG a unique GDB port
has to be opened for each connection. This can be achieved by following the
steps below:

* Open the Coder options... + External Mode tab and then select the .//
icon next to the Target device field.

¢ Select Serial over GDB, configure the device name to
127.0.0.1:port_number and then click the OK button to proceed. The
port_number must be an integer number between 1024 and 65535. The port
number is separated to the IP address with a colon character (:). For each
connection a different port number has to be configured.

Start the External Mode

¢ Apply the changes by clicking on Accept on the lower left side of the
Coder Options window.

* (Click the Connect button and if the connection is successful you will see
the trigger controls activate.

When working with multiple targets at the same time it is recommended to
specify serial numbers to identify the target devices.

l Quick Start

10

Target Support Architecture

Overview

As a separately licensed feature, the PLECS Coder can generate C code from
a simulation model to facilitate embedded code generation. Plexim provides
and maintains target support packages (TSPs) for specific processor families.
A TSP enables the PLECS Coder to generate code that is specific to a partic-
ular hardware target such as the STM32 family of MCUs or the PLECS RT
Box. With the PLECS Coder and a TSP, embedded control code can be gen-
erated, compiled, and uploaded to the target device directly from the PLECS
environment with minimal effort. Furthermore, the embedded control logic
can be tested extensively inside the PLECS simulation environment prior to
real-time deployment.

The Embedded Code Generation Workflow

The embedded workflow is designed for you to easily transition from a PLECS
model to an embedded code generation project without having to build and
maintain separate models. A typical embedded code generation workflow con-
sists of the following steps:

1 Design and simulate a controller and plant in PLECS. The controller repre-
sents the application that will run on the embedded target. The plant rep-
resents the hardware connected to the embedded target including the power
stage and other physical systems.

2 Add components from the target support library to configure the embedded
peripheral devices. Place the controller and peripheral models into a sub-
system representing the embedded target.

2 Target Support Architecture

12

3 Run an offline simulation. All peripheral components in the target support
library have behavioral offline models to facilitate the transition from simu-
lation to real-time deployment.

4 Select a discretization step size and nominal control task execution fre-
quency. When generating C code, the PLECS Coder will use the discretiza-
tion step size to automatically transform all continuous states in the con-
troller to the discrete state-space domain using the Forward Euler method.
The control task execution frequency is based on the discretization step size
and specifies the nominal execution rate of the digital control loop.

5 Build the embedded project and flash the MCU using PLECS or the
STM32CubelDE.

6 Connect to the MCU using the External Mode to test the embedded control
code executing on the embedded target.

Control Task Execution

Embedded applications for power electronics typically sense signals from the
power converter, process the inputs using digital control laws, and output
signals to actuation devices. The STM32 TSP library includes components to
model and program the MCU peripherals for sensing and actuation. The con-
trol laws are implemented using standard PLECS library components.

Time synchronization of signal measurement via the analog-to-digital con-
verter (ADC), control logic execution, and actuation via PWM outputs is crit-
ical in the digital power electronic control loop. The STM32 TSP provides the
flexibility to configure the ADC and control loop interrupts through the ADC
trigger and task trigger signals.

Note that there are two types of Analog In (ADC) blocks in the STM32 target
library: continuous Analog In and triggered Analog In. As the name suggests,
continuous Analog In block converts the selected inputs continuously. Whereas
the triggered block converts the selected inputs once per trigger. The following
sections use the triggered Analog In block.

ADC triggers start injected ADC conversions. The ADC start-of-conversion is
driven by an event generated from a timer based component. All injected con-
versions associated with an ADC unit are converted sequentially when the
ADC trigger is activated. The order of conversion is based on the order of the
analog input channel vector. Note that regular non-triggered ADC conversions
are also available.

Control Task Execution

Task triggers are generated at the end of injected conversions, PWM counter
underflow and overflow events, or the Timer block events. The task trigger
that connects to the Control Task Trigger component will trigger one execu-
tion of the digital control loop at the nominal base sample rate.

Additionally, the PLECS Coder and the STM32 TSP allow the user to gen-
erate multi-tasking code for the STM32 family of MCUs. For further infor-
mation, refer to the "Code Generation" section in the PLECS User Manual.
Multi-tasking code unlocks processing power for controls regulating multi-
ple system outputs with dynamics on a range of time-scales. Using the Task
library component, 15 additional tasks that execute at different rates (not
including the base task) can be specified, preserving processor time for the
fastest, highest priority control task (base task) in the application.

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks
must be an integer multiple of the base sample time.

In a multi-tasking mode, the Control Task Trigger component triggers the
base task associated with the nominal base sample time.

Note In the following sections, unless specified otherwise, control task and
base task can be considered synonymous.

Control Task Accuracy and PWM Frequency Tolerance

The MCU system clock frequency, SYSCLK, fundamentally limits the time
accuracy of the embedded target. SYSCLK is defined in the Target + Gen-
eral tab of the Coder + Coder Options window. The Timer and PWM carrier
generation clocks are derived from an integer number of counts of SYSCLK.
Therefore the time accuracy of task triggers and PWM carriers are also lim-
ited.

Consider the case where there is a desired PWM carrier frequency of 150 kHz
and the SYSCLK is set to 100 MHz. The closest achievable PWM carrier
frequency is 150.15kHz. Note that if the SYSCLK setting was changed to
90 MHz, then the target PWM frequency of 150 kHz could be achieved exactly.

13

https://www.plexim.com/sites/default/files/plecsmanual.pdf

2 Target Support Architecture

14

In cases where the PWM carrier frequency or ADC and task trigger periods
cannot be achieved exactly, the default behavior is to generate an error mes-
sage displaying the desired frequency or step size and the closest achievable
value. Adjusting the Frequency tolerance parameter overrides this behavior
and configures the PLECS Coder to automatically select the closest achievable
frequency. The Frequency tolerance can be configured in the mask param-
eters of the Timer, PWM, and Peak Current Controller (PCC) target support
library blocks.

The discretization step size configured in the General tab of the Coder +
Coder Options will also generate an error if the exact step size cannot be
achieved. This impacts the nominal period of the task trigger and introduces
a numerical inaccuracy since C code derived from the model executes at a dif-
ferent rate than was assumed during model discretization. The Frequency
tolerance parameter relating to model and control task discretization can be
adjusted in the General tab of the Coder + Coder Options + Target win-
dow.

Explicit and Implicit Trigger Definitions

The interrupt sequence of the embedded application can be defined explicitly
by connecting trigger signals, or implicitly where the interrupt sequence is au-
tomatically determined based on the components included in the schematic.
Implicitly defined control loops will not have a Control Task Trigger compo-
nent included in the schematic and all ADC trigger sources must be automat-
ically determined. Several possible explicit and implicit trigger sequences are
discussed below.

Note Explicitly defined trigger systems require that the Control Task Trig-
ger’s nominal base sample time parameter agrees with period of the task trig-
ger input signal.

Control Task Execution

Control task triggered by Timer

In a basic project without an ADC or PWM component from the target support
library, the task trigger must be generated by a generic Timer. The schematic
below shows a simple application where a digital output is toggled at a fixed
rate.

The explicit representation of the control task execution includes a Timer
component that generates the input signal for the Control Task Trigger. The
nominal base sample time of the Control Task Trigger must agree with the
Timer task frequency. In the implicit representation the PLECS Coder will
configure the Timer and Control Task Trigger automatically based on the Dis-
cretization step size parameter set in the Coder + Coder Options + Gen-
eral menu.

NOT Gi NOT Gi
Digital Digital
,1 Out 1 out

LED LED
Port: B Port:B
Pin:[7] Pin:[7]

S8 b

Timer

Task———--—%)
Timer ContAroI Task
Freq:Fdisc Trigger
Explicit Implicit

Figure 2.1: Basic model with control task triggered by Timer

Control task triggered by PWM

Control task execution can be synchronized with the PWM carrier, and the
repetition counter period determines how many events need to occur before

a trigger is generated. When the carrier type is symmetrical, for even values
of repetition counter period, the interrupts will occur at the carrier underflow
or overflow events. Underflow and overflow events correspond to PWM car-
rier reaching the respective carrier minimum or carrier maximum values. The
task trigger is configured in the Trigger tab of the PWM component.

In the explicit representation, the PWM task trigger output is connected to
the Control Task Trigger component, such that execution of the digital control
loop is synchronized with the PWM carrier. If the schematic does not include

15

2 Target Support Architecture

16

a Control Task Trigger or an ADC component, then the PLECS Coder will im-
plicitly select the most appropriate source for the task trigger. First, the PWM
generator that can achieve the control task frequency with the highest preci-
sion is chosen, starting from the lowest PWM number. If the control task fre-
quency cannot be achieved exactly using a PWM carrier, then the implicit trig-
ger logic will determine if more accurate task execution can be achieved with
the Timer. The most accurate source for the control task interrupt is then se-
lected.

The task trigger will default to triggering on underflow and overflow when the
task trigger is set to disabled in the PWM Trigger tab and the trigger is im-
plicitly defined.

NOT ST NOT Gi
Digital Digital
1 Out 1 Out
z z
LED LED
Port:B Port:B
Pin:[7] Pin:[7]
ST ST
P P
Tas
PWM Control Task PWM
CarrierFreq:Fdisc Trigger CarrierFreq:Fdisc
RepCtrPeriod:2
RepCtrEvent:Underflow
Explicit Implicit

Figure 2.2: Basic model with control task triggered by PWM

Control Task Execution

Control task triggered by Timer via ADC

If the schematic includes an ADC but no PWM generators, then the ADC
start-of-conversion must be triggered by the Timer. In this case, the control
task can be triggered by the ADC end-of-conversion or the Timer. When the
ADC end-of-conversion is the source of the Control Task Trigger input, as
shown in Figure 2.3, then the control loop interrupt will occur after all ADC
results registers are updated with the latest measurement values.

The implicit implementation automatically configures the Timer to periodi-
cally trigger the ADC start-of-conversion. The ADC trigger period is set by the
Discretization step size parameter found in the Coder + Coder Options +
General menu. The ADC unit with the greatest number of channels will trig-

ger the control task.
NoT ST ST
Digital Digital
1 Out 1 Out
z z

LED LED

Timer

Freq:Fdisc

ST Port:B Port:B
4 ADC}——---4 Pin:[7] Pin:[7]
Timer ST
Taskp =
Taskp

|
Traoorea (Triggered)
(Triggered) Control Task
Trigger
Explicit Implicit

Figure 2.3: Basic model with control task triggered by ADC

Control task triggered by PWM via ADC

Figure 2.4 shows the explicit and implicit implementations of the control task
being triggered by the ADC via the PWM. The sequence of events begins when
the PWM carrier reaches an underflow or overflow triggering the start-of-
conversion signal for the first ADC channel. The ADC channels are sampled
and updated sequentially until the result register of the final ADC channel is
updated. Once all ADC results are available, the ADC end-of-conversion inter-
rupt triggers the control task. This arrangement synchronizes the ADC start-
of-conversion with the PWM actuation and ensures the ADC results registers
are updated prior to executing the control loop.

17

2 Target Support Architecture

18

When both ADC and PWM components are included in any schematic, the
PLECS Coder will implicitly select the the PWM generator with the highest
control task accuracy as the ADC trigger. If the PWM generators cannot trig-
ger the ADC at the exact target frequency, then the Timer will be used if it is
more accurate. The control task will always be triggered by the ADC end-of-
conversion signal.

- NOT i

Digital Digital
1 Out 1 Out
z z
LED LED
Port:B Port:B
Pin: [7] Pin:[7]
' |
I
ST I ST
Tas P
Amaloa 1 | Controller Prvrrenc Controller WM
nalog In | _ nalog In
(Triggered) CarrlerFreq :Fdisc (Triggered) CarrierFreq:Fdisc

Control Task pepctrperiod:2
Trigger RepCtrEvent:Underflow

Explicit Implicit

Figure 2.4: Basic model with control task triggered by PWM via ADC

Control Task Execution

Advanced explicit configurations

The control task interrupt can execute at integer multiples of the PWM car-
rier frequency, and for a symmetric carrier the control task can be triggered at

twice the PWM carrier frequency.

Figure 2.5 shows a case where the discretization frequency is Fy;,., the sym-
metric PWM carrier period is Ts,, = 2/Fy;sc Hz, and the Control Task Trigger
interrupt period is Tctrirask = 1/Faisc. The control task is triggered twice per
PWM period. Figure 2.6 shows the corresponding PWM carrier, task trigger,

and PWM outputs.

LED
Port: B
Pin: [7]

Figure 2.5: PWM frequency set to half the control task frequency

Overflow

m
Underflow

PWM output]

Complementary PWM

Task Tri ger
(Rep. perlog

CarrierFreq: Fdisc/2
RepCtrPeriod: 1

PWM

NOT o7
Digital -—> PWM
- Out Taskf——--——_%_)

Control Task
Trigger

Tsw

TC(rlTask/

Figure 2.6: PWM carrier and task interrupts for PWM frequency set to half the

control task frequency

Figure 2.7 shows a case where the discretization frequency is Fy;s., the sym-
metric PWM carrier period is Ty, = 1/(2 - Fy;s.) Hz, and the Control Task
Trigger interrupt is generated at Ty irask = 1/Fqisc. Figure 2.8 shows the

corresponding PWM carrier, task trigger, and PWM outputs.

The STM32 TSP by default will only update the PWM duty cycle register on
PWM underflow and overflow events to prevent data corruption. In Figure 2.8

19

2 Target Support Architecture

20

note the delay between the task trigger and the instant when the duty cycle,
m, is updated in the PWM module. The task trigger initiates the control task
computation, but the modulation index is updated on the next overflow or un-
derflow event after the entire control task has been completed. When the con-
trol task is triggered by the ADC end-of-conversion, then the modulation index
will update on the next overflow or underflow event after all ADC channels
are converted and the control task is completed.

ST
ST
Digital PWM
Out Task}——-—-—£_)

LED PWM Control Task
Port: B CarrierFreq: Fdisc*2 Trigger
Pin: [7] RepCtrPeriod: 4

RepCtrEvent: Underflow

Figure 2.7: Schematic of PWM frequency set to twice the control task fre-
quency

Overflow T

TCtrlTask

N

m
Underflow

PWM output]]]
Complementary PWM

Task Trigger
(Rep. period = 4)

Figure 2.8: PWM carrier and task interrupts for PWM frequency set to twice
the control task frequency

Each ADC can receive independent start-of-conversion triggers from different
PWM generators for phase-shifted sampling. Figure 2.9 shows the case where
the ADC1 component is triggered on the carrier overflow and ADC2 is trig-
gered on carrier underflow from two different PWM modules with a common
carrier frequency.

After all channels associated with ADC2 are converted the control task is exe-

cuted with updated measurements from ADC1 and ADC2. On the next carrier
overflow the PWM duty cycle register is updated.

Control Task Execution

Controller1
Analog In1

PWM1

(Triggered) RepCtrPeriod: 2

RepCtrEvent: Overflow

Controller2
Analog In2 PWM2

]
I
]
(Triggered) E RepCtrPeriod: 2
! RepCtrEvent: Underflow
Control Task
Trigger

Figure 2.9: Explicit phase-shifted ADC sampling

Overflow

m

Underflow

PWM output
Complementary PWM
ADC1 Trigger

ADC2 Trigger

Task Trigger

(Rep. period=2)

Figure 2.10: PWM carrier and interrupts for phase-shifted ADC sampling

Tsw

21

2 Target Support Architecture

22

The Code Generation Project

This section provides additional technical background on the software archi-
tecture of the embedded code generation project included with the STM32
TSP. A STM32CubelDE project is included for each supported target chip in
the projects/ folder of the TSP. When building the project from directly from
the PLECS application, the files in gcc/g4 and gcc/f3 folder of the TSP are
used.

Static and dynamic code

The embedded code generation project consists of dynamic and static code. Dy-
namic code is generated by the PLECS Coder and is overwritten each time the
Build button is clicked in the Coder + Coder options... window. Static code
is provided with the TSP and should not be modified. The PLECS Coder also
generates additional dynamic configuration files that are used by the embed-
ded application.

When the Generate code only parameter checkbox is checked, then all gener-
ated dynamic code must be placed into the ${workspace loc}/cube g4xx/cg
or ${workspace_loc}/cube f3xx/cg folder of the imported STM32CubelDE
project depending on the configured target. Otherwise, by default all gener-
ated code is included in a new output directory in the same folder as the saved
PLECS model.

Control and background task dispatching

The application framework includes a rate monotonic scheduler to allow pre-
cise and efficient execution of the digital control loops. The base task is exe-
cuted at the highest priority. Additionally, up to 15 slower lower-priority tasks,
executed at different rates, can be specified. For further information on task
scheduling, refer to the "Code Generation" section in the PLECS User Manual.
A lowest-priority background task also exists to handle non-time critical tasks.
Figure 2.11 shows a configuration with a base task, one additional task, and a
background task executing in real-time on the MCU.

With every control task trigger interrupt issued by the Timer, PWM, or ADC
end-of-conversion (bold vertical bar), any lower priority tasks are interrupted
and the base task is executed. This ensures that the control task has the
highest priority. In addition, the lower priority tasks are periodically triggered
and executed when no higher priority tasks are active or pending.

https://www.plexim.com/sites/default/files/plecsmanual.pdf

The Code Generation Project

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks
must be an integer multiple of the base sample time. The non-default tasks
can be defined in the model window using the Task library component. An ex-
ample of an additional LED task, along with a base PWM task is shown in
figure 2.12.

Once the base and additional tasks have completed, the system continues with
the background task where lowest priority operations are processed.

I Hv I

Additionaltask 1 | [N M | H

Backgroundtask | | NN | e

Figure 2.11: Nested control tasks

LED_task
NOT ST ST
- Out Task)—-—(FD)
LED PWM Control Task
Port: B Trigger
Pin: [7]

Figure 2.12: Example of an additional LED task along with a base PWM task

If the base task is still executing when a second control task interrupt is
received, then the processor will halt and an assertion will be generated.
Similar behavior occurs if a low priority task does not complete by the
time it is scheduled to execute again. Assertions can be monitored using
STM32CubelDE debug tools.

23

2 Target Support Architecture

24

Embedded project architecture

Figure 2.13 shows the architecture of the embedded project included with the
STM32 TSP. At the top of the software stack is an application layer consist-
ing of the main application and the base and additional tasks. Next, there

is a dispatch routine that provides a rate monotonic scheduler for the nested
control tasks, as previously described. The user can choose between a custom
bare-metal task scheduler or FreeRTOS™, a real-time operating system, to

be used as the task scheduler. The processor-in-the-loop (PIL) framework acts
as middleware for External Mode communication with the PLECS applica-
tion on the user PC. The hardware abstraction layer (HAL) provides a hard-
ware agnostic interface between the application and chip specific configuration
settings. This ensures code portability between different processor platforms.
The hardware specific function calls utilize the STM32 drivers to configure the
MCU and key peripherals. At the bottom of the stack is the embedded hard-
ware which includes the MCU, peripheral devices, and other onboard acces-
sories.

Application Base Task Additional Tasks
main(){ Highest priority task Lower priority tasks
initialization()
CONTROL_INIT
}background[]
Dispatch Routine / FreeRTOS™ PIL Framework

Hardware Abstraction Layer (HAL)

STM32 Software Library and Drivers

Embedded Hardware

Figure 2.13: Embedded project architecture

STM32 Coder Options

The Target page contains code generation options which are specific to the
STM32 Target Support Package.

General

Chip Selects the target device chip.

System clock frequency (SYSCLK) Specifies the system clock frequency in
megahertz (MHz).

Use internal oscillator Selects the on-chip oscillator as the clock source.
The clock frequency is automatically specified based on the target device.

External clock frequency Specifies the frequency in megahertz (MHz) of
the external clock source when the internal oscillator is not used.

External ADC reference Specifies the external reference for VREF+ in volts
(V). VREF+ is the positive reference voltage for an analog input (ADC) or out-
put (DAC) signal. VREF+ range is 1.62 V < VREF+ < VDDA,

where VDDA is analog power supply (1.62 V < VDDA < 3.6 V).

Step size tolerance The desired control task frequency may not be achiev-
able based on the system clock frequency and the nominal discretization time
step. This setting configures the Coder to either Enforce exact value by gen-
erating an error when the exact control task frequency is unachievable or to
automatically Round to closest achievable value.

Build type This setting specifies the action of the Build button. Gener-

ate code into STM32CubeIDE project will generate code into the specified
STM32CubelDE project. STM32CubeIlDE must then be used to build the
project and flash the MCU. The Build only option will generate the code and
build it. The resulting binary file must then be flashed on the MCU by using a

3 STM32 Coder Options

26

third-party tool, e.g. the STM32CubeProgrammer. The Build and program op-
tion will automatically build and flash the target device from within PLECS.

STM32CubelDE project directory Specifies the target folder for code gen-
eration. The code must be generated into a pre-configured STM32CubelDE
project. When using the STM32CubelDE project templates provided

with the STM32 target support package, code must be generated into the
{workspace_loc}/cube g4xx/cg or {workspace loc}/cube f3xx/cg folder
where {workspace_loc} refers to the location of the imported project in the
STM32CubelDE workspace.

Programming interface Provides an option to automatically program the
target MCU from PLECS after it finishes generating and building code. Pro-
gramming occurs over the GNU debug protocol and requires a GDB server.
There are two options available:

® Open OCD Supports the Open On-Chip Debugger package and GDB server,
supporting the ST-LINK debug link out of the box (no external tools
needed).

* Segger J-Link Supports Segger debug probes, which offer superior
throughput. The Segger J-Link tools must be downloaded and installed sep-
arately.

Autoprobe connected device Enables the option to automatically check
if the device that is connected to the host computer matches the configured
Chip. If a different chip is detected the build process aborts with an error
message.

Specify serial number Enables the option to specify a serial number to
identify a target MCU. This is of interest when several targets are connected
at the same time to the same host computer.

Serial number Allows to specify the serial number of the target. The se-
rial number of a STM32 chip can be identified with third-party tools, e.g.
STM32CubeProgrammer. The entry is interpreted as a string and variables
are therefore not evaluated.

Generate pinmap file Specifies if a pinmap should be generated during
the build process. If set to Generic board a generic table independend from
any hardware board is generated. The table shows a summary of all input
and output pins used in the model for which code is generated for. If set to
Nucleo-64 board the input and output pins required by the simulation model
are mapped to the respective ST morpho connector pins (CN7 and CN10) of

a Nucleo 64 pin based board. The pinmap is generated as a .html file in the
Output directory as specified in the General tab of the Coder options.

https://sourceforge.net/projects/openocd/

Task Scheduler

Task scheduler Specifies if the task scheduling is based on FreeRTOS™ or
a light-weight bare-metal dispatch routine (Bare-metal). The bare-metal dis-
patch routine is more efficient compared to FreeRTOS™ and allows the user
to reach higher execution rates of the base task. However, only up to 6 differ-
ent tasks are allowed.

Protection

Analog inputs can be configured on this tab to generate trip events for the
Powerstage Protection block. Note that in order for a protection input to have
an effect it has to be explicitly activated in the Protection tab of the Power-
stage Protection block (see page 67).

Analog protection signals

Up to seven analog comparators can be enabled and configured for generating
trip signals for the Powerstage Protection block.

The configured sense port/pin must be connected to a positive (+) compara-
tor gpio. The comparator is automatically determined by PLECS and an error
message is issued in case no suitable comparator is found.

The user can configure a fault threshold voltage. Note that the fault threshold
voltage has to be set to a value between 0.0 V and 3.3 V. The fault threshold
is internaly generated with a digital-to-analog converter (DAC), connected to
the negative (—) comparator pin, as shown in the figure below.

Sense .
port/pin
to PWM/HRTIM

\—o to COMP output pin

Setup for an analog protection signal.

DAC

Enable analog protection signal 1-7 Enables an analog protection signal.
Sense port Specifies the port used for the analog signal connection.

Sense pin Specifies the pin used for the analog signal connection.

27

3 STM32 Coder Options

28

Trip behaviour Selects the polarity of the trip signal. If set to Trip if sig-
nal is below threshold the trip signal will be emitted if the connected ana-
log signal value is below the configured Fault threshold value. If set to Trip
if signal is above threshold the trip signal will be emitted if the con-
nected analog signal value is above the configured Fault threshold value.

Fault threshold voltage Configures the fault threshold in volts (V). The
value has to be between 0.0 V and 3.3 V.

Comparator output Selects if the output signal of the comparator should
be fully internal or also connected to a specified pin. If set to Internal the
output signal of the comparator is internal only and not accessible. If set to
Internal and external the output signal of the comparator is also available
for further usage at a specified pin of the MCU, see graphic above.

Comparator output port Specifies the port used to output the comparator
output signal.

Comparator output pin Specifies the pin used to output the comparator
output signal.

External Mode

These options are used to configure the External Mode communication with
the target device. This choice must be configured prior to building the project.

External Mode This setting adds code to the target device that enables the
External Mode. Code size and memory consumption are increased when the
External Mode is enabled. There are two communication options available,
Serial or JTAG.

Target buffer size Specifies how much target memory (16-bit words of
RAM) should be allocated to buffering signals for the external mode. The
number of words NN,, required by the external mode can be calculated as fol-
lows: Ny = Ngignais - 2 - (Nsamples + 1). If more samples are requested than
what is supported by the memory allocation, PLECS will automatically trun-
cate the scope traces to the maximal possible Ny pies Value. Note, however,
that requesting more memory than what is available on the target will result
in a build error. Recommended values for this setting are in the range of [500
...2000]for STM32F3xxRE or STM32G4xxRx chips. For chips that can be iden-
tified with STM32F3xxR8 the target buffer size should be in the range of [100
...500].

USART Rx Port Specifies the Rx port used for the External Mode USART
connection.

USART Rx Pin Specifies the Rx pin used for the External Mode USART con-
nection. This pin cannot be used by other peripherals.

USART Tx Port Specifies the Tx port used for the External Mode USART
connection.

USART Tx Pin Specifies the Tx pin used for the External Mode USART con-
nection. This pin cannot be used by other peripherals.

Debug interface Provides an option to communicate with the target MCU
from PLECS after building code from STM32CubeIDE. Communication occurs
over the GNU debug protocol and requires a GDB server. There are two op-
tions available:

* Open OCD Supports the Open On-Chip Debugger package and GDB server,
supporting the ST-LINK debug link out of the box (no external tools
needed).

* Segger J-Link Supports Segger debug probes, which offer superior
throughput. The Segger J-Link tools must be downloaded and installed sep-
arately.

29

https://sourceforge.net/projects/openocd/

3 STM32 Coder Options

30

STM32 Target Support Library
Component Reference

This chapter lists the contents of the STM32 Target Support library in alpha-
betical order.

4 stz Target Support Library Component Reference

Analog In

Purpose Output the measured voltage at an analog input channel, in continuous mode
Library STM32
Description This block configures the continuous conversion mode of the ADC peripheral.
In continuous mode, Analog In block converts the selected inputs continuously
ST without CPU intervention. The Analog In block output signal represents the
ADC b measured voltage at the ADC pin. The output is scalable and can be used

with an offset, where the output signal is calculated as input*Scale+Offset.
When the Analog input channel(s) parameter is vectorized, each input
channel is measured sequentially in the order of the input channel vector.

To convert selected inputs once per trigger, use the Analog In (Triggered)
block instead. Signal update of the Analog In (triggered) block is prioritized
over the regular Analog In block.

Parameters
Main

ADC unit
Selects the peripheral index for the ADC input when there are multiple
ADC submodules.

Cont. conversion input channel(s)
Index of the analog input channel for a specific ADC submodule. For vec-
torized input signals a vector of input channel indices must be specified.

Cont. conversion scale(s)
A scale factor for the input signal.

Cont. conversion offset(s)
An offset for the scaled input signal.

Cont. conversion acquisition time
Selects between a minimal or user specified ADC acquisition time.

Cont. conversion acquisition time value(s)
Sets the ADC acquisition time window in seconds.

32

Analog In

Offline only

Resolution
The resolution of the offline ADC model in bits. The resolution is applied
over the voltage reference range. If the parameter is left blank ADC quan-
tization is not modeled.

Voltage reference
The voltage range of the offline ADC model used to determine the ADC
resolution.

33

4 stz Target Support Library Component Reference

Analog In (Triggered)

Purpose

Library

Description

ST

ADC P
Taskp

Parameters

34

Output the measured voltage at an analog input channel, in single or trig-
gered mode

STM32

This block configures the single conversion mode of the ADC peripheral. In
single mode, Analog In (Triggered) block converts the selected inputs once per
trigger. The Analog In (Triggered) block output signal represents the mea-
sured voltage at the ADC pin. The output is scalable and can be used with
an offset, where the output signal is calculated as input*Scale+Offset. When
the Analog input channel(s) parameter is vectorized, each input channel is
measured sequentially in the order of the input channel vector.

The Trigger source parameter selects between an automatic or external
ADC start-of-conversion signal, where the external start-of-conversion signal
is connected to the ADC trigger port. If the ADC task output is the source of
a Control Task Trigger, then the control task will execute once the last ADC
channel is converted.

Although up to four injected measurements are supported by the STM32 ADC,
only up to three channels are allowed in PLECS. This is due to an ADC silicon
bug (revision Y) that can result in invalid measurements for the first channel.
As a consequence, the first measurement is always discarded and the block is
limited to a maximum of three conversions.

Main

Trigger source
Selects an automatic or external start-of-conversion trigger.

ADC unit
Selects the peripheral index for the ADC input when there are multiple
ADC submodules.

Analog input channel(s)
Index of the analog input channel for a specific ADC submodule. For vec-
torized input signals a vector of input channel indices must be specified.

Scale(s)
A scale factor for the input signal.

Analog In (Triggered)

Offset(s)
An offset for the scaled input signal.

Acquisition time
Selects between a minimal or user specified ADC acquisition time.

Acquisition time value(s)
Sets the ADC acquisition time window in seconds.

Offline only

Resolution
The resolution of the offline ADC model in bits. The resolution is applied
over the voltage reference range. If the parameter is left blank ADC quan-
tization is not modeled.

Voltage reference
The voltage range of the offline ADC model used to determine the ADC
resolution.

35

4 STM32 Target Support Library Component Reference
g PP Y P

Base Task Load

Purpose Provide the CPU load generated by the base task as a percentage of the base
task period

Library STM32

Description This block outputs the percentage of time that is used by the base control task

with one interrupt period. In case of multi-tasking, the output corresponds to
the Base task load only, and does not include the load created by additional
Base Task lower-priority tasks.

Load

36

CAN Port

CAN Port

Purpose
Library

Description

CAN Port

Parameters

Set up a CAN communication port

STM32

The block sets up a CAN (Controller Area Network) communication port.

The input en determines the CAN port state. Setting en to zero will force the
CAN port to the bus-off state, while setting the port to 1 allows the CAN port
to transition to bus-on. A bus-off condition has to be cleared by setting the
enable signal to 0, and then back to 1.

The output on is 1 to signal bus-on status, 0 otherwise. The output ea is 1 to
signal error active status, 0 otherwise.

Main
CAN interface
Selects the CAN interface to use.

CAN protocol
Selects the CAN protocol to use. CAN FD supports bit rates higher than 1
Mbit/s and payloads larger than 8 bytes.

GPIO
Tx port
Selects the port used to transmit data.

Tx pin
Selects the pin used to transmit data.

Rx port
Selects the port used to receive data.

Rx pin
Selects the pin used to receive data.

37

STM32 Target Support Library Component Reference

38

Bit rate configuration

Bit rate [bit/s]
Defines the bit rate that is used on the connected CAN bus. All devices on
a CAN bus must be configured to use the same bit rate. This parameter is
only available if the parameter CAN protocol is set to CAN 2.0.

Bit sample point [%]
Defines the point in time were the bus level is read and interpreted as the
value. This parameter is only available if the parameter CAN protocol is
set to CAN 2.0.

Bit rate switching
Enables or disables bit rate switching by setting this parameter to En-
abled or Disabled respectively. This option is only available if CAN pro-
tocol is set to CAN FD.

Nominal bit rate [bit/s]
Defines the bit rate during the nominal phase (also known as arbitration
phase) that is used on the connected CAN bus.

Nominal bit sample point [%]
Defines the point in time were the bus level is read and interpreted in the
nominal phase.

Data bit rate [bit/s]
Defines the bit rate during the data phase that is used on the connected
CAN bus. This parameter is only accessible when Bit rate switching is
Enabled.

Data bit sample point [%]
Defines the point in time were the bus level is read and interpreted in the
data phase. This parameter is only accessible when Bit rate switching is
Enabled.

Advanced

Advanced configuration
If set to Enabled, advanced bit timing settings can be configured. When
set to Disable the bit timing will be automatically deduced from the con-
figured bit rate and sampling point. The following default configuration
will be used in this case:

* Nominal/Data rate bit length is maximized to have as much as possi-
ble time quanta to construct a bit time. This will result in a low bit rate
prescaler (BRP).

CAN Port

¢ Nominal/Data SJW is chosen to be as large as possible.
* SSP offset is set to be in the middle of the data bit: (1 + Tsegl + Tseg2)/2.
¢ SSP filter is set to 0.

All following parameters are only available if the advanced configuration is
set to Enable and CAN FD protocol is used.

Nominal rate bit length [1+Tsegl+Tseg2]
Defines the sum of all bit time segments during the nominal phase ex-
pressed in time quanta as 1 + Tsegl + Tseg2.

Nominal rate SJW [Tq]
Synchronization jump width during nominal phase expressed in time
quanta.

Data rate bit length [1+Tsegl+Tseg2]
Defines the sum of all bit time segments during the data phase expressed
in time quanta as 1 + Tsegl + Tseg2.

Data rate SJW [Tq]l
Synchronization jump width during data phase expressed in time quanta.

Secondary sampling point (SSP)
If set to Enabled advanced secondary sampling point settings can be con-
figured and the automatic transceiver delay compensation is enabled.

SSP offset [Tql
Defines the secondary sampling point offset expressed in time quanta.

SSP filter [Tql
Defines the secondary sampling point filter expressed in time quanta.

39

STM32 Target Support Library Component Reference

40

CAN Receive

Purpose
Library

Description

CAN Receive

Parameters

Receive CAN messages
STM32

The block initiates the reception of CAN messages with a given identifier (ID)
on the given CAN interface. Up to three CAN messages can be configured. On
reception of a CAN message the data is made available on the block output dx
as a vectorized signal of the provided frame length. The output v is 1 for one
simulation step when new data is received, 0 otherwise. The output v has a
width equal to the configured number of messages. The f output is only rele-
vant when CAN FD is used and configured in the CAN Port (see page 37) block.
The output f is a vectorized signal containing the following information for
each configured message:

¢ The first signal specifies the error state indicator. If the signal is 0 the
transmitting node is error passive, 1 when the node is error active.

* The second signal specifies whether the Rx frame is received in classic (0)
or FD (1) format.

* The third signal specifies whether the Rx frame is received without (0) or
with (1) bit rate switching.

CAN interface

Selects the CAN interface to use. The selected CAN interface must be con-
figured using a CAN Port (see page 37) block.

Number of messages
Selects the number of messages to be received.

CAN ID source

Selects whether the CAN ID is specified as a parameter or is supplied as
an input signal.

CAN ID(s)
The ID(s) for which the block receives CAN messages. The CAN ID(s) can
be supplied as either 11-bit value(s) (for CAN 2.0A) or a 29-bit value(s) (for
CAN 2.0B). When the CAN ID source is set to Parameter, the length of
the CAN ID(s) vector has to match the number of messages.

Frame format

Specifies the frame format that is used when filtering for matching CAN
messages. Possible values are:

CAN Receive

¢ Standard CAN for CAN 2.0A messages with an 11-bit ID. The standard
11-bit ID provides for 2'!, or 2048 different message identifiers.

¢ Extended CAN for CAN 2.0B messages with an 29-bit ID. The extended
29-bit ID provides for 22, or 537 million identifiers.

¢ Auto uses the Standard format if the specified CAN ID is smaller than
2047. Otherwise, the Extended format is used.

Frame length
Specifies the frame length of the CAN message in bytes. This parameter
must be specified as a vector whose length corresponds to the number of
messages.

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

41

4 stz Target Support Library Component Reference

CAN Transmit

Purpose
Library

Description

CAN Transmit

Parameters

42

Transmit CAN messages
STM32

The CAN Transmit block sends out data on a CAN bus. The data to send
must be provided on the block input dy as a vectorized signal with data type
uint8. The length of the transmitted CAN message is determined by the
width of the input signal (1 to 8 bytes for CAN2.0 and 1 to 64 bytes for CAN
FD).

Messages are either sent regularly with a fixed sample time or on demand
when the trigger input changes. When configured for triggered execution, mes-
sages are sent when the trigger signal changes in the manner specified by the
Trigger type parameter:
rising

Data is sent when the trigger signal changes from 0 to a non-zero value.
falling

Data is sent when the trigger signal changes from a non-zero value to 0.

either
Data is sent when the trigger signal changes from 0 to a non-zero value or
vice versa.

CAN interface
Selects the CAN interface to use. The selected CAN interface must be con-
figured using a CAN Port (see page 37) block.

Number of messages
Selects the number of messages to be received.

CAN ID source
Selects whether the CAN identifier (ID) is specified as a parameter or is
supplied as an input signal.

CAN ID(s)
The ID(s) for which the block receives CAN messages. The CAN ID(s) can
be supplied as either 11-bit value(s) (for CAN 2.0A) or a 29-bit value(s) (for
CAN 2.0B). When the CAN ID source is set to Parameter, the length of
the CAN ID(s) vector has to match the number of messages.

Frame format
Specifies the frame format of the CAN messages to be transmitted. Possi-
ble values are:

CAN Transmit

¢ Standard CAN for CAN 2.0A messages with an 11-bit ID. The standard
11-bit ID provides for 2'!, or 2048 different message identifiers.

¢ Extended CAN for CAN 2.0B messages with an 29-bit ID. The extended
29-bit ID provides for 22, or 537 million identifiers.

¢ Auto uses the Standard format if the specified CAN ID is smaller than
2047. Otherwise, the Extended format is used.

Execution
Selects between regular and triggered execution.

Trigger type
The direction of the edges of the trigger signal upon which the data is
sent, as described above (for triggered execution only).

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

43

4 stz Target Support Library Component Reference

44

Control Task Trigger

Purpose
Library

Description

Parameters

Specify the base sample time and trigger for the main control tasks
STM32

The digital control loop executes at a nominal base sample time. The input to
the Control Task Trigger specifies the interrupt that triggers a control loop ex-
ecution. The source of the interrupt can be from the ADC end-of-conversion
signal, PWM counter underflow and overflow events, or the Timer block.
When a Control Task Trigger is not included in the subsystem an appropriate
trigger source is automatically determined.

In a multi-tasking mode (defined in the Scheduling tab of the Coder Options
dialog), the Control Task Trigger block triggers the Base task associated with
the base sample time.

The offline simulation will model the impact of controller discretization when
the Control Task Trigger is included. For offline simulations the Forward Eu-
ler method with the nominal base sample time is used to integrate continuous
states within the subsystem containing the Control Task Trigger. Offline sim-
ulations will use the default subsystem execution settings when the Control
Task Trigger block is not included in the subsystem.

Nominal base sample time
Specifies the nominal sample time of the discretized model in seconds.
The nominal base sample time value is synchronized with the model Dis-
cretization step size of the PLECS Coder settings.

DAC

DAC

Purpose

Library

Description

ST
1 DAC

Parameters

Generate an output voltage from the input signal; the output voltage is calcu-
lated as input*Scale+Offset

STM32

This block generates a voltage on the DAC pin in the range of 0V to 3.3 V. The
output is scalable and can be used with an offset, where the output signal is
calculated as input*Scale+Offset. Output voltage limitations can also be set.

DAC selection
Configure the DAC pin either as by DAC unit and channel, or by Port
and Pin number.

DAC unit
Selects the desired DAC interface.

DAC channel
Index of the DAC output channel for a specific DAC interface.

Port
Selects the port name of the DAC channel.

Pin number
Defines the pin number of the DAC channel.

Scale
A scale factor for the output signal.

Offset
An offset for the scaled output signal.

Minimum output voltage
The lowest value that the output voltage can reach.

Maximum output voltage
The highest value that the output voltage can reach.

45

4 stz Target Support Library Component Reference

46

Digital In

Purpose
Library

Description

ST
Digital

In

Digital In

Parameters

Read a digital input

STM32

The output signal is 1 if the input voltage is higher than the high level input
voltage threshold, V;y, and 0 if it is lower than the low-level input voltage,
V1. For other input voltages the output signal is undefined. Refer to the de-
vice data sheet for the electrical characteristics of a specific target. During an
offline simulation the block behaves like a simple feedthrough.

Port
Selects the port name of the digital input channel.

Pin number(s)
Defines the pin number of the digital input channel. For vectorized input
signals a vector of input channel indices must be specified.

Input characteristic

Specifies whether an internal pull-up or pull-down resistor is connected to
the digital input.

Digital Out

Digital Out

Purpose
Library

Description

ST
Digital

Out

Parameters

Set a digital output
STM32

The output is set low if the input signal is zero and is set high for all
other values. During an offline simulation the block behaves like a simple
feedthrough.

Port
Selects the port name of the digital output channel.

Pin number(s)
Defines the pin number of the digital output channel. For vectorized out-
put signals a vector of output channel indices must be specified.

Output characteristic
Specifies whether an internal pull-pull or open drain resistor is connected
to the digital output.

47

4 stz Target Support Library Component Reference

Edge Counter

Purpose Count edges of a pulse train

Library STM32

Description The Edge Counter block counts edges of an external signal. It can be config-

Counter

Parameters

48

ured to count rising or falling edges only or both. The output of this block
then shows the counter value at the time it was read. The counter value can
be reset by an optional block input to the configured Initial condition value.

In the Single channel + Direction counting Mode the counter counts up or
down depending on the signal level on the direction input pin. The counter is
incremented if the signal level is logic 1, and decremented if the level is logic 0
at the direction pin.

An example is shown in the figure below. The counter is configured as Single
channel + Direction, and reacts to the rising edge only. Every time a rising
edge is detected, the counter value is incremented or decremented according
to the direction pin signal level. Each task period the actual counter value is
read and output at the block output terminal.

tSl('p

Model Step

Pulse Input _J u u LJ U U |__

Direction input |

Counter value [——4 L-‘T

4
Block output 4 N 7 N 6

Edge counter value in function of direction signal

Main

TIM unit
Selects the timer unit used. All timer units are 16-bit counters, except
TIM unit 5 is a 32-bit counter.

Edge Counter

Maximum counter value
The counter is reset to zero when it has reached the Maximum counter
value and detects an input edge in the positive direction. The counter is
set to the Maximum counter value when it is zero and detects an input
edge in the negative direction.

Mode
Selects whether the counter should count in positive direction only (Single
channel) or should change the counting direction based on an additional
Direction signal (Single channel + Direction). The counter increments
its value when the Direction signal is logic 1, and decrements when the
direction signal is logic 0.

External reset
The external reset selects the behaviour of the external reset input. The
values rising, falling and either cause a reset of the counter to its Initial
condition on the rising, falling or both edges of the reset signal. A ris-
ing edge is detected when the signal changes from 0 to a positive value, a
falling edge is detected when the signal changes from a positive value to 0.
If set to none the counter value cannot be reset by software.

Initial condition
The initial condition allows to choose the start value of the counter. The
initial condition is loaded at the beginning of a simulation or after a reset.

Channel

Edge
The edge detection trigger can be set on Rising, Falling or Either.

Port
Selects the port name.

Pin number(s)
Defines the pin number.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected
to the input pin. If high impedance is selected no internal pull resistor is
connected.

49

STM32 Target Support Library Component Reference

50

Direction

Port

Selects the port name of the direction signal.
Pin

Defines the pin number of the direction signal.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected
to the input pin. If high impedance is selected no internal pull resistor is
connected.

Offline only

System clock frequency (SYSCLK)[MHz]
Defines the system clock frequency in MHz for offline simulations. For
real-time simulations, the edge counter block uses the system clock fre-
quency parameter specified in the Target tab of the Coder Options dialog.

External Sync

External Sync

Purpose
Library

Description

ST
xt.
Hnp
Sync
External Sync

Parameters

External synchronization port for HRTIM and PWM blocks
STM32

The External Sync block allows to synchronize the start of connected HRTIM
and PWM blocks based on an external signal. In addition, the External Sync
block allows to reset the internal counter of the connected HRTIM and PWM
block to zero when a rising or falling edge was detected on the external sig-
nal connect to the specified pin. The External Sync block can also be used to
generate an external synchronization signal.

Synchronization
Specifies if the External Sync block should act as master or slave. If set to
react to external SYNC signal (slave) the External Sync block reads
in an external synchronization signal and allows synchronizing HRTIM
and PWM blocks to an external signal. If set to generate external SYNC
signal (master) the External Sync block generates a synchronization sig-
nal at the specified pin. This generated signal can be used on a different
MCU board in order to synchronize the PWM signals together.

Synchronization behaviour (slave)
Specifies if the External Sync block should only start the connected
HRTIM or PWM counter (Start on sync) or should also reset them (Start
and reset on sync).

Synchronization behaviour (master)
If set to Output positive pulse the External Sync block will generate a
synchronization pulse changing from 0V towards the positive voltage refer-
ence. If set to Output negative pulse the External Sync block will gener-
ate a falling edge synchronization pulse changing from the positive voltage
reference towards OV.

Port
Selects the port name.

Pin
Defines the pin number.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the input. If high impedance is selected no internal pull resistor is con-
nected.

51

4 stz Target Support Library Component Reference

52

HRTIM Master

Purpose

Library

Description

HRTIM Master

ADC)
e HRTIMT [
Master
118d Task

Synchronize multiple high resolution timer (HRTIM) timing units to generate
frequency and/or phase variable PWM signals

STM32

The HRTIM Master block allows the synchronization of multiple HRTIM tim-
ing units (see page 55). This synchronization enables the generation of fre-
quency variable and/or phase shifted PWM output signals.

All synchronized HRTIM timing units will inherit the configured carrier fre-
quency. The carrier frequency can be controlled by using the scalar input sig-
nal f’. The resulting carrier frequency f. is calculated as the product of the
nominal carrier frequency specified in the block parameter Carrier fre-
quency [Hz] and the input signal f’.

An additional enable input terminal en can be activated. Applying a signal =
0 to this port will set all synchronized HRTIM timing units to their idle state.

The HRTIM Master block can also be used as burst mode controller. Burst
mode operation is commonly used during light load conditions to increase

the converter efficiency. It allows to have the output channels of synchronized
HRTIM timing units alternatively in idle and run state, by hardware. Due to
this, some switching periods can be skipped with configurable periodicity and
variable duty cycle. The burst mode duty cycle can be set by the Bd input ter-
minal and has to be a value between 0 and 1, as shown in the figure below.

Tburs(

HRTIM 1

ey E—
m Bd Master

HRTIM Master
CarrierFreq: 10e3
BurstFreq: 1000

BM 111
HRTIM 1
Timer A

HRTIM Timing Unit

PWMMiiihiss ERERERE

Burst mode controller with a burst mode duty cycle of 0.4.

HRTIM Master

Parameters

Note Keep in mind that the HRTIM prescaler is set during the initializa-
tion process of the MCU, and cannot be changed during operation. Therefore,
in case of variable frequency operation, the Carrier frequency [Hz] parame-
ter should be selected as the lowest frequency required during operation.

The HRTIM master block can configure interrupts to trigger the ADC start-of-
conversion and the Control Task Trigger. Interrupts are synchronized with the
PWM carrier, and the repetition counter period determines how many events
need to occur before a trigger is generated. Trigger events will always occur at
the period event (overflow) of the sawtooth carrier.

Main

HRTIM unit
Selects the HRTIM timer unit to use.

Carrier frequency [Hz]
Defines the frequency of the carrier in Hertz (Hz). The HRTIM master car-
rier is always of type sawtooth.

Frequency tolerance
Specifies the behavior when the desired carrier frequency is not achievable
based on the system clock frequency.

Frequency variation
Enables or disables the frequency input port f’. The resulting output fre-
quency of all synchronized HRTIM timing units is given by f’ multiplied
by the Carrier frequency parameter.

Enable port
An additional component port is created if Enable port is set to Show. Ap-
plying a signal = 0 to this port sets all synchronized HRTIM timing unit
output channels to their idle state.

Trigger

ADC trigger
Enables or disables the ADC start-of-conversion trigger. The trigger event
always occurs at the period event of the carrier.

53

STM32 Target Support Library Component Reference

54

Task trigger
Enables or disables the Control Task Trigger. The trigger event always
occurs at the period event of the carrier.

Repetition counter period
Determines how many period events need to occur before the actual trig-
ger is propagated.

Burst Mode

Burst mode
Enables or disabled the burst mode controller.

Burst mode frequency [Hz]
Defines the burst mode periodicity. This parameter is only visible if Burst
mode is Enabled.

HRTIM Timing Unit

HRTIM Timing Unit

Purpose Generate up to two independent PWM signals or a complementary PWM sig-
nal pair

Library STM32

Description The high resolution timer (HRTIM) timing unit block generates up to two in-

dependent PWM signals or a complementary PWM pair with a configurable
blanking time. The modulation index must be provided via the input signal,
which is a vectorized signal if the block uses two independent output chan-
nels. The carrier starts at 0 and varies between 0 and 1. The PWM output is
active when the input is greater than the carrier.

HRTIM Timing Unit

The following figure illustrates the difference between the two available out-
put modes: complementary outputs (a) and independent outputs (b). Indepen-
dent outputs share