Plegs

THE SIMULATION PLATFORM FOR
POWER ELECTRONIC SYSTEMS

Web-Based Simulation Manual Version 3.6

How to Contact Plexim:

+41 44 533 51 00 Phone
+41 44 533 51 01 Fax
Plexim GmbH Mail

Technoparkstrasse 1
8005 Zurich

Switzerland
info@plexim.com Email
http://www.plexim.com Web

Web-Based Simulation Manual
© 2014 by Plexim GmbH

The software PLECS described in this manual is furnished under a license
agreement. The software may be used or copied only under the terms of the
license agreement. No part of this manual may be photocopied or reproduced
in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. Other product or brand
names are trademarks or registered trademarks of their respective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents

1 Introduction

2 Quick Start
Installation of Local Web Server Environment
Windows Operating System (explained using XAMPP)
OS X Operating System (explained using MAMP)

Overview of Data Structure

3 Model Development
JSON Files
JSON Files for PLECS Web-Based Simulation
PLECS Model it

iii

Contents

4 Deployment 23
Model Embedding 23
Direct Model Embedding 23
Indirect Model Embedding using CORS 25

Setting up the PLECS simulation server 26

iv

Introduction

PLECS Web-Based Simulation (WBS) is a software technology for publishing
simulation models on web pages. These simulation models can be made avail-
able to large audiences using the world-wide web. WBS provides the web page
visitor with a graphical user interface (GUI) for running PLECS simulations
embedded in a web page. There are two main application areas of WBS:

* Marketing: WBS allows component manufacturers to offer product in-
formation not only in the form of pictures and data sheets, but also al-
lows for customer interaction with the products as part of simulated real
systems of different application areas. Also, WBS provides a tool for non-
technical employees to discuss customer-specific needs in a sales conver-
sation.

¢ Education: Universities can use PLECS WBS to guide students
through areas of electrical engineering. The lecturer can decide which
part of the model or simulation can be modified by the student and
therefore set a focus on a specific topic. WBS also has the potential to
enhance existing online exercises and exams concerning power electron-
ics and motor drives. The same approach can be used in companies for
internal education and training.

Setup

The setup of a PLECS WBS is given in Fig. 1.1. The overall system includes
three different parties: the web site visitor, web site owner and the simulation
provider. Each one provides a certain hardware and software platform to exe-
cute part of the code.

Infroduction

PLECS WEB-BASED SIMULATION SETUP

WEB SITE VISITOR WEB SITE OWNER SIMULATION PROVIDER
(Engineer, Student) (Company, University) (Plexim, Company,
University)
D —] —m]
—] N [[e—
===\ | \/e5 BROWSER @D | \EB SERVER WEB SERVER @D | p| Ecs
(Safari, Firefox, (Microsoft/Apache) (Apache, MySQL, PHP)
Opera, Internet Explorer)
HTML content
HTML content _-
HTML <PLECS framework
reference> T e
web base
<PLECS model simulation framework
reference>
) PLECS
~ Client side o
PLECS framework |« [Javascript/CSS/ PLECS
HTML LI model
PLECS model Server side (PHP) XML- %fd%?
front end T AJAX \ RPC
1
\§ J JSON PLECS
[Provided by fronfglzend mf?liel
web site owner
\§ / < ’

o]

Provided by PLEXIM

Figure 1.1: Setup of PLECS Web-Based Simulation.

The web site visitor uses a web browser on any device (e.g. desktop

PC, laptop, tablet or smart phone) to display a specific web page from

the company’s web server. Besides the normal HTML content the page
contains references to the PLECS framework and to a specific PLECS

model. Inside the browser these references are resolved and the WBS

graphical user interface (GUI) is displayed.

The web site owner processes the visitor’s page load requests on a web
server (e.g. Microsoft Windows Server, Apache Server). It contains differ-
ent HTML pages, each of them with the same PLECS framework refer-
ence, and a different, or possibly the same, PLECS model reference.

The simulation provider supplies client side code that is executed on
the visitor’s machine. Server side scripts are executed on the simulation

Workflow

Workflow

provider’s web server. Together, the client and server side code represent
the PLECS WBS framework. In the background, a PLECS server ap-
plication is running and executing all simulation requests from the web
site visitor. The communication between PLECS and the server side code
happens via an XML-RPC interface!. The PLECS WBS server version of
PLECS Standalone is able to run several simulations of different models
in parallel depending on the number of CPU cores available.

As apparent from Fig. 1.1, the web site owner is involved in three different
parts of PLECS WBS. The owner needs to provide:

¢ The HTML content. A PLECS WBS model can be seamlessly integrated
in every web page that contains a PLECS framework reference in either
the <head> or <body> section of the HTML code.

¢ The JSON front end file. It defines how the user can interact with the
PLECS model and simulation.

e The PLECS model file. This file is needed to run a simulation.

As creating content for PLECS WBS usually involves different people within
an organization the workflow depicted in Fig. 1.2 is proposed.

An application engineer develops a PLECS model for WBS or modifies an
existing one. He decides which parameters can be modified and which sub-
systems are visible to the end user by editing the corresponding JSON file.
To check the appearance and usability of the developed model for WBS a lo-
cal server environment is installed on the application engineer’s machine (e.g.
MAMP or XAMPP for OS X, Windows or Linux). In the last step the engi-
neer will upload the PLECS model and JSON front end file to the simulation
server. This process is repeated for every WBS model.

An IT administrator needs to enable scripting, allow customer-specific
HTML attributes and embed the PLECS WBS framework into the content
management system (CMS). This will be done only once since all WBS mod-
els share the same framework. It is recommended to set up a test page refer-
ring to a generic WBS model and check if the model is displayed properly on
various web browsers and devices.

IXML-RPC stands for "Extensible Markup Language Remote Procedure Call" and uses HTTP as
a transport mechanism.

Infroduction

PLECS WEB-BASED SIMULATION WORKFLOW

APPLICATION
— ENGINEER —
TASK TOOLS
—J —
1. Develop PLECS model PLECS Standalone
2. Develop JSON file Text editor
3. Test simulation model MAMP/XAMPP, PLECS SIMULATION
in local environment Standalone, web browser SERVER
4. Upload file to simulation File browser/online-login Uploag
Uploac @ammmn % EB PAGE VISITOR/
= :] END USER
X oo
IT
TASK TOOLS
— — COMPANY
1. Allow scripting/CSS tags to CMS SERVER
embed framework into CMS
Adjust
2. Reference to simulation CMsS ——] (]
server CMs m
(3.) Test web page in different Web browser (e.g. Safari, C— = TOOLS
web browsers IE, Firefox, Opera etc.)
i Javascript
&
— ¥ MARKETING — A
—J — <
1. Write web page content CMS
2. Polish web page CMS
3. Approve (Mail)

Figure 1.2: PLECS Web-Based Simulation Workflow.

Technical marketing is usually responsible for the overall appearance of the
web site. They write the web page content, polish the final design, and ap-
prove each web page before taking them online.

The web page visitor in the end only needs a web browser with JavaScript
enabled to perform a simulation. There is no need to download any software
or browser plug-ins.

Quick Start

This chapter explains how you can install a development environment for
PLECS web-based simulation (WBS) on your local computer. You will then de-
velop your first own WBS model and test it with your preferred web browser.

As stated in the previous chapter a development environment for PLECS WBS
requires different software tools:

¢ PLECS Standalone is needed to create and modify a PLECS model. The
PLECS Standalone application in version 3.6 and higher will also func-
tion as a simulation server on your local computer. No additional WBS
license is required as long as this feature is used only for development
and test purposes. In contrast to the the PLECS WBS server application,
PLECS Standalone limits the number of WBS models simultaneously
open to 1.

¢ The PLECS WBS framework is shipped with your PLECS Standalone
distribution and can be placed in a directory of your choice.

* A web server environment must be running on your local computer, to
let you test the developed models in a web browser before publishing
them. The WBS model embedded in a HTML page can be verified and
improved without interfering with the operation of the public web server.

¢ Last but not least a text editor (preferably with JSON syntax highlight-
ing) is needed for writing the JSON file that defines the GUI of the WBS
model.

Installation of Local Web Server Environment

In the following section the installation process of a local server environment
is discussed on the basis of MAMP and XAMPP - two freeware tools that are

2 Quick Start

available for Windows and MAC OS X. The XAMPP installation can also be
carried out on a Linux operating system and works analogous to the installa-
tion on Windows.

Windows Operating System (explained using XAMPP)

1.

In PLECS Standalone, select the entry PLECS Extensions... from the
menu item File. This will open a dialog box. In the tab Web choose a
web framework path, e.g. C:/webframeworks. From the available web
frameworks choose version_1 and install the selected framework at the
path specified.

. Download and install XAMPP. XAMPP is a local server environment con-

sisting of an Apache server, MySQL database system, and PHP inter-
preter on a desktop computer. Within this environment the full PLECS
WBS setup and work flow can be tested without any need to set up an
online network.

. Open the configuration file "httpd.conf" in the XAMPP installation di-

rectory (e.g., C:/xampp [apache [conf/httpd.conf) and change/set the two
lines:

DocumentRoot "C:/webframeworks/version_1/public"
<Directory "C:/webframeworks/version_ 1/public">

. Start PLECS 3.6 and enable XML-RPC on port 1080 in the PLECS pref-

erences menu.

. Copy the default configuration file webframeworks /private /con-

fig.ini.default to webframeworks [private /config.ini. This file can be
edited to adjust the configuration of PLECS WBS on your system.

. Start XAMPP and start the Apache and MySQL Server. Wait until

the Apache and MySQL Server are started. Use (preferably) Internet
Explorer, Firefox (>=24.0), Chrome, or Opera and open the web site:
localhost. You should see the PLECS web interface with some example
circuits.

. Click on the link "Buck converter". You should see a schematic of a buck

converter and a PLECS Scope. In the background the same simulation
model is loaded in PLECS 3.6. Clicking the "Simulate" button should
give an instantaneous result of current and voltage characteristics in the
Scope. Note that a PLECS window will be displayed in the background

http://downloads.sourceforge.net/project/xampp/XAMPP%20Windows/1.8.3/xampp-win32-1.8.3-4-VC11-installer.exe

Installation of Local Web Server Environment

or pop-up that shows the buck converter circuit and performs the actual
simulation.

OS X Operating System (explained using MAMP)

1.

In PLECS Standalone, select the entry PLECS Extensions... from the
menu item File. This will open a dialog box. In the tab Web choose a
web framework path, e.g. ~/webframeworks. From the available web
frameworks choose version_1 and install the selected framework at the
path specified.

. Download and install MAMP. MAMP is a local server environment con-

sisting of an Apache server, MySQL database system, and PHP inter-
preter on a desktop computer. Within this environment the full PLECS
WBS setup and work flow can be tested without any need to set up an
online network.

. Start MAMP and click on "Preferences...", then "Apache", and set the

document root to the folder named "public" inside the "webframeworks"
folder (e.g., ~/webframeworks [version_1/public).

. Start PLECS 3.6 and enable XML-RPC on port 1080 in the PLECS pref-

erences menu.

. Copy the default configuration file webframeworks /ver-

sion_1/private / config.ini.default to webframeworks [ver-
sion_1/private/config.ini. This file can be edited to adjust the con-
figuration of PLECS WBS on your system.

. Open MAMP and click "Start Servers". Wait until the Apache and

MySQL Server are started. Use (preferably) Safari, Firefox, Chrome, or
Opera and open the web site: localhost:8888. You should see the PLECS
web interface with some example circuits.

. Click on the link "Buck converter". You should see a schematic of a buck

converter and a PLECS Scope. In the background the same simulation
model is loaded in PLECS 3.6. Clicking the "Simulate" button should
give an instantaneous result of current and voltage characteristics in the
Scope. Note that a PLECS window will be displayed in the background
or pop-up that shows the buck converter circuit and performs the actual
simulation.

http://www.mamp.info/downloads/releases/MAMP_PRO.zip

2 Quick Start

Overview of Data Structure

After installation of the XAMPP or MAMP server the provided examples (also
accessible online demo.plexim.com) should work out of the box. These exam-
ples provide a foundation for customization or creating new implementations.
The descriptions of the most important folders and files are given in Fig. 2.1.

,_models. .. Directory containing PLECS models with correspond-

ing JSON files and thermal descriptions folder. The
file names and thermal description folder name follow
the pattern: model_name.plecs, model_name.json and
model_name_plecs/.

,_plexim... Example PLECS and JSON files provided by Plexim.
,_custom. .. PLECS and JSON files provided by the user

, _private. .. Directory with only local access on the web server.

., config.ini.default. .. Default configuration file of the PLECS web service
including host information, model path, model expiry
time and scope font style and size.

. _embed-example.html. .. Example that shows how to embed a PLECS model
into a web page.

. _public...Directory with public access.

 plexim. .. Example HTML pages with frame work and WBS
L model references provided by Plexim.

index.html. .. Web page with list of WBS examples.

,__css...Style sheets for the WBS GUI and general web page
appearance.

,__custom...Custom HTML and style sheets for the general web
page appearance defined by the user.

Figure 2.1: Directory tree of the PLECS WBS frame work.

http://demo.plexim.com

Create Your First PLECS WBS Model

Create Your First PLECS WBS Model

Setting up a PLECS WBS model consists of three different tasks: Creating
the model in PLECS, writing a JSON file to define the interaction of the user
with the model on a web page and setting up the actual web page that loads
the model. These three tasks are discussed step-by-step using the example of
a Buck converter. The web page set up is done first in order to check progres-
sion of the PLECS Web-Based Simulation model at every work step. To follow
this tutorial a valid PLECS Standalone license is needed. Notice that with a
PLECS Standalone license only one model can be simulated at a time. To be
able to serve multiple users and parallel PLECS simulations a PLECS web
server license is needed.

Web page

In the next step the HTML page is created that actually loads the WBS
model. Write the following code in a file named tutorial_circuit.html and place
this file inside the public/custom/ folder. More information about the individ-
ual lines of this code can be found on page 23 of this manual.

<IDOCTYPE html>
<html xmiIns:ng="http://angularjs.org" id="ng—app" ng—app="plecsModel">
<head>
<title> Tutorial circuit</title>
<link href="../css/plecs.css" rel="stylesheet" type="text/css" />
<link href="../plexim/css/plexim_theme.css" rel="stylesheet" type="text/css" />
<script src="../js/angular.min.js"></script>
<script sre="../js/plecs.min.js"></script>
</head>
<body>
Home
<h1>Tutorial Circuit</h1>
<noscript class="plecs">
<div class="msg msg—red"> Error: JavaScript is disabled in your browser.
Please enable JavaScript to use this page.</div>
</noscript>
<div pl—-model="tutorial_circuit" pl—path="custom">
</div>
</body>
</html>

When navigating to localhost /custom (or localhost:8888 /custom using MAMP)
with a web browser an error message is shown because there doesn’t exist a
PLECS and JSON file for this specific model "tutorial_circuit" so far. The cre-
ation of these two files will be discussed in the next sections of this tutorial.

2 Quick Start

PLECS Model

In this section you will build a PLECS model of a buck converter that is suit-
able for WBS. The model is based on the PLECS workshop tutorial "Thermal
Simulation of a Buck Converter using PLECS".

1. Open PLECS 3.6 and create a new model and save it under the name
models [custom [Tutorial_Circuit.plecs.

2. Set up the circuit as shown in Fig. 2.2 with the parameter values in Tab.
2.1. The resistor and duty cycle take a variable parameter value "VarR"
and "D". In the initialization script the variables are set to 52 and 0.5
respectively. Later in the online simulation the user should be able to
change these values in a corresponding parameter field. Note that you
should leave enough space between the capacitor and resistor so that a
parameter field fits in between on the website.

PWM
f: 10e3 L
L: 1.2e-3
7 \
IGBT

Vdc ZS D . ¢ L=
V: 500 C: 100e-6

+

I'—»’ V]
[—»-| YA

Probe Scope

Figure 2.2: Schematic of a buck converter for PLECS WBS.

3. First drag the DC voltage source and then the resistor and inductor into
the probe block. Check the source voltage, resistor voltage and inductor
current. The number of outputs of the multiplexer is set to [2 1]. Open
the scope and label the individual traces and plots for easier understand-
ing of the user. Remember that the user will later not have the full ac-
cess to the model so it is important to give as much information inside
the scope as possible (including e.g. units or specific component labels
etc.).

10

Create Your First PLECS WBS Model

Component | Value Range
R VarR | 0.1Q-1009
C 100 pF constant
L 1.2mH constant
Vdc 500V constant
Duty cycle D 0.01 -0.99
Frequency f | 10kHz constant

Table 2.1: Parameter values.

4. The "RADAU" solver is chosen in the simulation parameters window.
This is due to the fact a web user can later change the resistor value and
create a "stiff" system the DOPRI solver is not able to solve. Also the re-
fine factor is set to 10 in order to increase the smoothness of the output
curves in the scope. The stop time is set to 20 ms.

JSON File

In this section a basic JSON file is written in order to get a first overview of
the PLECS WBS model. More information about the different keywords can
be found in section 3 of this manual.

1. Create a file named models/custom [Tutorial_Circuit.json with a text edi-
tor of your choice. Use preferably UTF-8 encoding as this is the standard
for all JSON files.

2. The minimum required content of the JSON file is the entry about the
root schematic. Note that the optional height and width parameters
eventually have to be adjusted depending on the graphical design of your
buck converter. If no width and hight are specified the natural size of the
PLECS schematic is taken as default.

"schematics":

[

{
"pd"h" S "/

11

2 Quick Start

"height" : 280,
"width" : 430,
" resizell : n ||,

"display" : "always"

The empty path refers to the root schematic. The values for the resize

and display keyword are optional with the default values "" and "al-

ways".!

3. In the next steps you will create the JSON file entries for the two user
parameters (duty cycle and resistor value). To display the parameter
field for the load resistance in the WBS schematic use the following
JSON code snippet:

"paramtables":

[
{
"display": "schematic",
"component": "R",
"labelpos": "left",
"parameters":

[
{

"variable": "VarR",
lllabeIH: |IR|I,
llunitll: IIQII,
"min": 0.1,
"max": 100,
"value": 5

}
]
}
|

The value "left" for the "labelpos" keyword places the parameter field on
the left hand side of the component named "R", i.e. the resistor the end
user shall be able to change. The keyword "variable" defines which vari-
able in PLECS is assigned by the user input and "min" and "max" de-
fine an upper and lower limit for the input. To write the symbol Omega
(Q2) either use the Unicode character U+03A9 or the Java source code
"\u03A9".

4. In the same manner as in the last step use the keyword "dialog" in-
stead of "schematic" to display the parameter field for the duty cycle in

In a JSON file an empty value ("") can be replaced by the expression null.

12

Create Your First PLECS WBS Model

a dialog box. The minimum and maximum value of the duty cycle are
0.01 and 0.99 respectively. The keyword "labelpos" is ignored and can be
omittted.

. Now make the scope visible to the WBS user by using the following
JSON code:
"scopes":
[
{
"path": "Scope",
"height": 400,
"width": 400,

"resize": "xy",
"display": "open"

The value "open" means the scope is initially open but can later be closed
by the user. Also, the width and height is initially fixed to 400 pixel but
can be resized in x and y direction.

. A transient simulation is added by default to a web-based simulation if
nothing is specified in the JSON file. For the sake of completeness you
will add the "simulations" keyword to the JSON file with the following
configuration:

"simulations":

[

"label": "Simulate",
"unulysis" L

}
]

Where "" stands for the default transient simulation.

. Now save the JSON file and open the website localhost /custom (or
localhost:8888 [custom using MAMP) in a web browser of your choice
(preferably a current version of safari, firefox, chrome or opera). Click on
the link "Tutorial circuit" and then on the simulation button. After open-
ing the scope the result should look similar to the one given in Fig. 2.3.
In case of an error, the WBS frame work has an inbuilt syntax validator
that shows in which part of the JSON file a syntax error occured. You
can also check the syntax of your JSON file online at http://jsonlint.com.

13

http://jsonlint.com

Quick Start

Home

Tutorial Circuit

Scope
7] co@anm ¥
WM In- and output voltage (V)
f: 10e3 L 500
L: 1.2e-3
7\ Faaaa! 400+
IGBT
c I+ 300
Vdc D . = R 5 QR
V- 500 C: 100e-6
200
100+
= o
Probe Scope 100 Inductor current (A)
80
| Simulate | | Hold result | 60-
Simulation completed. 40-
20
0.0 05 10 s X 1e-2

Simulation powered by PLECS.

Figure 2.3: Website with PLECS WBS schematic of a buck converter.

JSON Files

Model Development

This chapter explains in detail the syntax of the JSON file and the object
structure required for defining the GUI of a WBS model.

JSON stands for "JavaScript Object Notation"!. The standard encoding for
JSON files is UTF-8. JSON’s basic types are:

* Number — a signed decimal number that may contain a fractional part
and may use exponential E notation. JSON does not allow non-numbers
like NaN and inf, nor does it make any distinction between integer and
floating-point. (Even though JavaScript uses a double-precision floating-
point format for all its numeric values, other languages implementing
JSON may encode numbers differently.)

* String — a sequence of zero or more Unicode characters. Strings are de-
limited with double-quotation marks and support a backslash escaping
syntax.

e Boolean — either of the values true or false.

* Array - an ordered list of zero or more values, each of which may be
of any type. Arrays use square bracket notation where elements are
comma-separated.

* Object — an unordered associative array (name/value pairs). Objects are
delimited with curly braces ({ and }) and use commas to separate each

IThis section was taken from Wikipedia and extended with some information concerning PLECS
WBS.

http://en.wikipedia.org/wiki/JavaScript_Object_Notation

3 Model Development

pair, while within each pair the colon (:) character separates the key
or name from its value. All keys must be strings and should be distinct
from each other within that object.

¢ null — an empty value, using the word null.

JSON generally ignores any whitespace around or between syntactic elements
(values and punctuation, but not within a string value). However, JSON only
recognizes four specific whitespace characters: the space, horizontal tab, line
feed (e.g., \n is needed if a PLECS component name has a line break), and
carriage return. JSON does not provide or allow any sort of comment syntax.

Example The following example shows a possible JSON representation de-
scribing a person.

Listing 3.1: Example content of JSON file.

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"height_cm": 167.64,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

",phoneNumbers": [
{ "type": "home", "number": "212 555—1234"},
{ "type": "fax", "number": "646 555—4567"}
]
}

JSON Files for PLECS Web-Based Simulation

A JSON file for PLECS WBS contains a basic object with the following key-
words: "schematic", "scopes", "paramtables", "results" and "simulations".
Each of these keywords are followed by an array, indicated by square brackets

([D, that contains the different properties.

The following code listings show the basic structure and syntax for these key-
words. All keywords are highlighted in bold font, string values in quotation

16

JSON Files

marks, and containers for strings and numbers in italic font. Different possi-
ble values for a certain keyword are separated by a vertical line (1) and de-
fault values are marked with an underline. All keywords which feature a de-
fault value can be omitted. Note that the vertical order of the objects (e.g.,

scopes and schematics) in a WBS model corresponds to their order in the
JSON file.

Keyword: "schematics"

With the "schematics" keyword the visibility of a .plecs schematic in the
PLECS WBS GUI can be specified. This can be the root schematic or any
number of subsystem schematics 3.2.

Listing 3.2: Schematics entry in JSON file.

"schematics":

[
{
"path" : siring,
"height" : «_null_« | number,
"width" : «_null_x | number,
||resize|l . *_null_* | "X“ I ||y" | "Xy",
"display" : «_"always"_« | "closed" | "never" | "open"
}
]

To reference to the root schematic write "" for the "path" keyword. If the
height and width are not specified the schematic is displayed with the origi-
nal dimensions of the PLECS schematic.

Keyword: "scopes"

With the "scopes" keyword the visibility of a PLECS Scope within a schematic
of PLECS WBS model can be specified.

Listing 3.3: Scopes entry in JSON file.

"scopes":
[
{
"path" : string,
"height" : «_400_« | number,
"width" : «_400_x | number,
|lresize|l . *7nU||7* | "X" I ||yll | "Xy",
"display" : «_"always"_« | "closed" | "never" | "open",
"analysis":

17

3 Model Development

"cursor1": { "time": «_null_« | number},
"cursor2": { "time": «_null_x | number},
"delta":

{

"locked": «_false_« | true,
"time": «_null_« | number

}
"thd": { "label": «_null_« | string}
}
}
]

Note that if the time value for cursor 1 and cursor 2 is specified together with
delta then the time value of cursor 1 is omitted. Besides the calculation of the
total harmonic distortion (THD) other functions are available using the key-

"o "o

words implying their respective meanings: "min", "max", "mean" and "rms".

Keyword: "results"

With the "results" keyword a two dimensional result table can be specified.
The tables are displayed below the last open scope in the WBS GUIL

Listing 3.4: Results entry in JSON file.

"results":

[

"title" : «_null_x | string,
"width" : number,
"columns":

{ "header": «_null_« | string }
1.
"rows":

{ "header": «_null_« | string, "data": []}

}
]

The data array is specified as follows:

Listing 3.5: Data array entry for the results section.

"data":

[
{

"scope": number,
"plot": number,

18

JSON Files

"signal": number,
"analysis": "cursor1" | "cursor2",
"unit": «_null_« | string

The scope, plot and signal number count starting at zero.

Keyword: "paramtables"

The "paramtables" keyword specifies where and how a user can input a pa-
rameter value. The parameter tables can be displayed in three different ways:

¢ "schematic": The parameter field is displayed at the position of a compo-
nent in the schematic.

¢ "dialog": The parameter field or combobox is displayed in a dialog box,
that opens when clicking on the specified component

¢ "table": The parameter table in the form of a radio button or combobox is
displayed just above the simulation button.

The JSON file entries for the three possibilities is given below:

Listing 3.6: Paramtables entry with the display option "schematic".

"paramtables":

[
{

"display": "schematic",
"component": siring,
"labelpos": "left" | "right" | "top" | "bottom",
"description": string,
"parameters":
[
{

"variable": string,

"label": «_null_« | string,
"unit": «_null_« | string,
"min": «_null_x | number,
"max": «_null_x | number,
"value": number,

"disabled": «_false_x | true,
"tracename": «_false_x | true

19

3 Model Development

Listing 3.7: Paramtables entry with the display option "dialog".

"paramtables":
[
{
"display": "dialog",
"component": string,
"description": string,
"parameters":
[
{

"variable": string,

"label": «_null_x | string,
"unit": «_null_« | string,
"min": «_null_x | number,
"max": «_null_x | number,
"value": number,

"disabled": «_false_x | true,
"tracename": «_false_x | true

"variable": number,
"addvariables": «_null_« | [string],
"label": «_null_« | string,

"type": "combobox",

"options":

[

{ "value": number, "addvalues": «_null_« | [number], "label": «_null_« | string }

,
"unit": «_null_« | string,
"valuve": «_null_« | number,
"tracename": «_false_x | true

Listing 3.8: Paramtables entry with the display option "table".

"paramtables":

[
{
"display": "table",
"parameters":
[
{
"variable": string,
"addvariables": «_null_« | [string],
"label": «_null_« | string,
"multiple": frue | «_false_x,
"type": "radio" | "combobox",
"size": «_null_s | number,
"tracename": _false_x | true
"options":

20

JSON Files

[

{
"value": number, "addvalues": «_null_« | [number], "label": «_null_« | string,
"suffix": «_null_« | string, "link": «_null_« | string,
"filter": «_null_« | [{ "variable": string, "value": number}],

}

,
"value": «_null_+ | number

}
]
}
]

If the keyword "tracename" takes the boolean value true the automatic la-
belling of simulation traces is enabled. This means for every simulation run
the trace is labelled with a list of corresponding parameter values.

The keywords "suffix" and "link" will only take effect if the type of the param-
eter table is specified as "radio" (for "combobox" the entries are ignored). Also
note that for the combobox and radio button it is possible to set additional
variables by specifying the keyword "addvariables" which take the values "ad-
dvalues" inside the "options" array.

The "keyword" multiple allows for a multiple selection of entries in the combo
and radio box. The size of the combo box as a number of entries can be set
with the "size" keyword (for the radio box the entry is ignored).

Keyword: "simulations"

The "simulations" keyword defines the possible simulation types (transient
and steady-state analysis) for a PLECS model. The entry in the JSON looks
as follows:

Listing 3.9: Simulations entry.

"simulations":

[
{
"label": «_null_« | string,
"analysis": «_null_« | "Steady—State Analysis"

}
]

If no analysis method is specified a transient simulation with the label "Simu-
late" is automatically enabled.

21

3 Model Development

22

PLECS Model

To set up a PLECS WBS example a working PLECS model with transient or
steady-state analysis is needed. In this step there are several points to note:

The model needs to be saved in the models folder together with all cor-
responding data files and thermal descriptions. The file names and
thermal description folder name follow the pattern: model_name.plecs,
model_name.json and model_name_plecs /

Define variables for parameters a user is allowed to tune in a PLECS
WBS session and initialize all variables in the initialization script of the
PLECS model.

Consider choosing a "stiff" solver in PLECS as a given combination of
individual user parameters might create a numerically stiff system.

Provide meaningful component names to make it easier to set up the
JSON file.

Provide meaningful trace and signal descriptions in the PLECS Scopes
as the user won’t be able to trace back to the origin of the individual
datasets.

Component names that should be visible in a PLECS WBS model also
have to be visible in the schematic of the PLECS model.

Leave enough space around components that have a parameter ta-

ble of type "schematic" to avoid overlap of the text field and compo-

nent symbols. Also, the component name and a parameter table of type
"schematic" should not be placed in the same position adjacent to a com-
ponent.

Note that it is possible to use the assertion framework of PLECS inside WBS
models. An evaluation of an assertion may cause an abortion of the simulation
or display a warning or error message at the bottom of the root schematic in
the WBS GUI. Using assertions to pause and later continue the of a running
simulation is not possible.

Deployment

In this chapter the steps are discussed to make the WBS available for use ei-
ther on a local-host or on an openly accessible web server.

Model Embedding

Direct Model Embedding

For the case where the web server application and the PLECS Standalone
application run on the same physical server, the WBS model can be directly
embedded into a web page. When working with a local server environment to
test and develop WBS models (see section 2) the following code for a generic
HTML page can be used:

Listing 4.1: Generic HTML test page for WBS.

<!DOCTYPE hitml>
<html xmins:ng="http://angularjs.org" id="ng—app" ng—app="plecsModel">
<head>
<link href="../css/plecs.css" rel="stylesheet" type="text/css" />
<|——if lte IE 8]>
<script src="../|s/|query.min.js"></script>
<![endif]— —>
<script sre="../js/angular.min.js"></script>
<script src="../s/plecs.min.js"></script>
</head>
<body>
<div pl—path="model_path" pl—model="model_name" pl—url—eval="boolean"></div>
</body>
</html>

The code listing is divided into the following parts:

4 Deployment

24

2 The AngulardS module called "plecsModel" is bootstrapped.

4 The CSS file "plecs.css" is loaded. It is needed to render all objects re-
lated to the PLECS WBS correctly and should not be changed. If you
would like to change the appearance of the WBS model include your own
CSS file after "plecs.css" and override selected styles.

5-7 Including jQuery is only required if your page needs to support the old
version 8 of Internet Explorer.

8 The compressed version of the AngularJS script is loaded.
9 The JavaScript file for PLECS WBS is loaded.

12 The PLECS WBS model model_name is loaded into the web page. The
model-path model_path is specified relative to the directory models.
If the optional attribute pl-url-eval is set to true a WBS model can be
loaded with custom parameters encoded in the URL string.

Note that depending on the root path specified in the web server installation,
the paths of the scripts and style sheets might need to be adjusted.

Custom Default Parameters

It is possible to load a WBS model with custom parameters that override the
default values specified in the JSON file. This can be done by providing a
query string after the URL address of the web page in which the WBS model
is embedded. The basic syntax of the query string is given in the following:

http://webserver/webpage.html?variablel=valuel &variable2=value2&...

This example loads an arbitrary WBS model in the web page webpage.html
that is hosted by webserver. Additionally, the model is initialized with the pa-
rameters listed after a question mark (?). Each parameter is assigned a value
and the different parameters are separated by an ampersand (&). In this way
the default values for the parameter variables given in the JSON file can be
modified by the web site visitor. Note that special characters in the query
string need to be properly encoded!. To allow the web site visitor overriding
parameter values with the URL string the atrribute pl-url-eval = "boolean”
needs to be set when embedding the WBS model in the web page (see the pre-
vious section). It is also possible to repeat the expression variablel = valuex
several times with different values for valuex to select multiple items in a
checklist or combobox.

IFor a list of character encodings please refer to Wikipedia or http://urlencode.org to directly
encode a specific string.

http://en.wikipedia.org/wiki/Percent-encoding
http://urlencode.org

Model Embedding

Indirect Model Embedding using CORS

In Fig. 1.1 the simulation provider and web site operator are not the same in-
stance and the PLECS WBS application runs on a different server than the
web server delivering the HTML content. In this case the WBS framework
needs to be loaded externally from the simulation server and all simulation
requests through the GUI of the WBS need to be forwarded to the simulation
server. This indirect model embedding is done using cross-origin resource shar-
ing (CORS).

The code listing 4.2 can be included either in the <head> or the <body> sec-
tion of the HTML page. There the PLECS WBS framework is loaded and the
JavaScript file xdomain.js is loaded to handle cross domain requests. Note
that all resources are loaded with an inherited transfer protocol indicated by
a double slash (//) so that the WBS model can be loaded over secured and non-
secured connections depending on what the web page visitor uses to load the
HTML page.

Listing 4.2: First part of the code needed to in-

clude PLECS Web-Base Simulation using CORS.

<link href="//demo.plexim.com/css/plecs.css" rel="stylesheet" type="text/css" />

<script src="//demo.plexim.com/js/xdomain.min.js" slave="//demo.plexim.com/proxy.html"></script>
<script src="//demo.plexim.com/js/angular.min.js"></script>

<script sre="//demo.plexim.com/js/plecs.min.js"></seript>

If the web server already includes an older version of jQuery (such as Drupal
7) or the simulation provider wants to support Internet Explorer 8 the follow-
ing alternative code needs to be included:

Listing 4.3: Alternative code to listing

<link href="//demo.plexim.com/css/plecs.css" rel="stylesheet" type="text/css" />
<script>
if(window.jQuery) {
var arr = jQuery.fn.jquery.split(".");
if (arr[0] < 1 || (arr[0] == 1 && arr[1] < 7))
jQueryOld = jQuery.noConflict(true);
}
</script>
<script sre="//demo.plexim.com/js/xdomain.min.js" slave="//demo.plexim.com/proxy.html"></script>
<!——[if lte IE 8]>
<script src="//demo.plexim.com/js/jquery.min.js"></script>
<![endif] — —>
<script src="//demo.plexim.com/js/angular.min.js"></script>
<script>if (window.jQueryOld) jQuery = jQueryOld;</script>
<script src="//demo.plexim.com/js/plecs.min.js"></script>

25

4 Deployment

An example to indirectly load a WBS model is given in listing 4.4. The code
needs to be placed in the <body> section where the model should appear in
the end. This example loads a single-phase diode rectifier with custom default
user parameters enabled (pl-url-eval = true).

Listing 4.4: Example code that loads a PLECS diode rec-

tifier model in the <body> section of the HTML file.

<div id="ng—app" ng—app="plecsModel">
<div pl—-model="Single—Phase Diode Rectifier 1" pl—path=
</div>

pl—url—eval = true> </div>

Setting up the PLECS simulation server

For a fully functional setup with multiple simultaneous client connections a
PLECS Web Server license is required. The PLECS Web Server license allows
you to run PLECS as a service (on Windows) or daemon (on OS X and Linux),
i.e. it runs in the background without a graphical user interface. In this mode
PLECS can be started automatically during system startup before any user is
logged into the system.

To set up a PLECS simulation server first follow the steps for installing
PLECS in the PLECS manual. To run PLECS as a service or daemon an ad-
ditional executable, PLECS_server, is provided in the PLECS installation di-
rectory. This executable accepts the following command line options:

-setport port_number
Sets the TCP port that PLECS will use for XML-RPC. This port number
must match the port specified in the config.ini file. PLECS needs to be
restarted to make the change effective.

Installs the PLECS service (Supported on Windows only).

Deinstalls the PLECS service (if it has been installed with -i before, sup-
ported on Windows only).

-t
Terminates PLECS and the PLECS service.

When called without arguments, PLECS is started in server mode in the back-
ground. It can be stopped by calling PLECS server -t.

26

Model Embedding

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

RC script for Linux

To start PLECS as a daemon on Linux the script below may serve as an ex-
ample. It assumes that PLECS is installed in /opt/plecs. The script was de-

veloped for Ubuntu Linux 14.04 LTS.

Listing 4.5: Example rc script for Linux

#! /bin/sh
BEGIN INIT INFO
Provides: plecs

Required—Start: ~ $remote_fs $syslog

Required—Stop: ~ $remote_fs $syslog

Default—Start: 2345

Default—Stop: 016

Short—Description: Starts the PLECS daemon.

Description: Starts and stops the PLECS daemon.
END INIT INFO

Author: Oliver Schwartz <schwartz _at_ plexim.com>

Please remove the "Author" lines above and replace them
with your own name if you copy and modify this script.

Do NOT "set —e"

PATH should only include /usr/« if it runs after the mountnfs.sh script
PATH=/sbin:/bin:/usr/bin

DESC="PLECS server application"

NAME=PLECS_server

export LD_LIBRARY_PATH=/opt/plecs

DAEMON=/opt/plecs/ $NAME

DAEMON_ARGS=""

PIDFILE=/var/run/$NAME.pid

SCRIPTNAME=/etc/init.d/$NAME

Exit if the package is not installed
[—x "$DAEMON"] | | exit O

Read configuration variable file if it is present
[—r /etc/default/ $NAME] && . /etc/default/ SNAME

Load the VERBOSE setting and other rcS variables
. /lib/init/vars.sh

Define LSB log_x functions.
Depend on Isb—base (>= 3.2—14) to ensure that this file is present
and status_of_proc is working.

. /lib/Isb/init—functions
#

Function that starts the daemon/service

#
do_start()

27

4 Deployment

48 # Return
0 if daemon has been started
50 # 1 if daemon was already running
2 if daemon could not be started
52 start—stop—daemon ——start ——quiet ——pidfile $PIDFILE — —exec $DAEMON — —test > /dev/null \
|| return 1
54 start—stop—daemon — —start ——quiet ——pidfile $PIDFILE ——exec $DAEMON —— \
$DAEMON_ARGS \

56 || return 2
1
58
#
60 # Function that stops the daemon/service
#
62 do_stop|)
64 { # Return
O if daemon has been stopped
66 # 1 if daemon was already stopped
2 if daemon could not be stopped
68 # other if a failure occurred
pidofproc $DAEMON >/dev/null
70 ["$2" 1= 0] && return 1
$DAEMON —t
72 pidofproc $DAEMON >/dev/null
["$2" =0] && return 2
74 # Wait for children to finish too if this is a daemon that forks

and if the daemon is only ever run from this initscript.
76 start—stop—daemon ——stop ——quiet ——oknodo — —retry=0/30/KILL/5 ——exec $DAEMON
["$2" = 2] && return 2

78 # Many daemons don't delete their pidfiles when they exit.

rm —f $PIDFILE
80 return O

}
82
case "$1" in

84 start)

["$VERBOSE" I= no] && log_daemon_msg "Starting $DESC" "$NAME"
86 do_start

case "$2" in
88 0]1) ["$VERBOSE" = no] && log_end_msg O ;;

2) ["$VERBOSE" = no] && log_end_msg 1 ;;

90 esac
92 stop)

["$VERBOSE" I= no] && log_daemon_msg "Stopping $DESC" "$NAME"
94 do_stop

case "$2" in
96 0]1) ["$VERBOSE" = no] && log_end_msg O ;;

2) ["$VERBOSE" = no] && log_end_msg 1 ;;

98 esac
100 status)

28

Model Embedding

102

104

106

108

110

112

114

116

118

120

122

124

126

128

status_of_proc "$DAEMON" "$NAME" && exit O | | exit $2

"

restart | force—reload)

log_daemon_msg "Restarting $DESC" "$NAME"
do_stop
case "$2" in
0]1)
do_start
case "$2" in
0) log_end_msg O ;;
1) log_end_msg 1 ;; # Old process is still running
«) log_end_msg 1 ;; # Failed to start
esac

*)
Failed to stop
log_end_msg 1

esac

i
*)

echo "Usage: $SCRIPTNAME {start | stop | status | restart | force—reload}" >&2

exit 3

esac

29

plexXim

electrical engineering software

Plexim GmbH infoldplexim.com www.plexim.com

	Contents
	Introduction
	Setup
	Workflow

	Quick Start
	Installation of Local Web Server Environment
	Windows Operating System (explained using XAMPP)
	OS X Operating System (explained using MAMP)
	Overview of Data Structure

	Create Your First PLECS WBS Model
	Web page
	PLECS Model
	JSON File

	Model Development
	JSON Files
	JSON Files for PLECS Web-Based Simulation

	PLECS Model

	Deployment
	Model Embedding
	Direct Model Embedding
	Indirect Model Embedding using CORS
	Setting up the PLECS simulation server

