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Direct Flux Vector Control

1 Overview

This example demonstrates a high-speed salient permanent magnet machine drive based on Direct Flux
Vector Control (DFVC) as proposed in [1, 2, 3].

Contrary to the more traditional rotor frame current regulation, DFVC operates in a synchronous frame
that is aligned with the stator flux, in which flux and torque can be controlled directly by means of two
basic PI regulators. This direct flux control is less dependent on an accurate knowledge of motor param-
eters and is particularly well suited for operating a machine in flux-weakening mode.

Note This model contains model initialization commands that are accessible from:
PLECS Standalone: The menu Simulation + Simulation Parameters... + Initializations
PLECS Blockset: Right click in the Simulink model window + Model Properties + Callbacks +
InitFcn*

2 Model

A system level overview of the model is given in Fig. 1.
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Figure 1: System overview of the Direct Flux Vector Control for a salient permanent magnet machine
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Direct Flux Vector Control

2.1 Electrical Circuit and Machine Model

The voltage-source inverter (VSI) is modeled as an ideal three-legged bridge with a stiff DC supply. The
six IGBTs are switched by means of a space vector modulator to realize the phase voltages commanded
by the vector control. A three-phase motor current sensor and a DC link voltage sensor provide feedback
to the control algorithm.
The electric machine is of the permanent magnet assisted salient type with Ld > Lq. It is connected to a
frictionless inertia as well as an idealized position and speed sensor.

2.2 Controls

The input to the control system is the desired machine torque. In order to optimize the efficiency of the
drive, the Maximal Torque Per Ampere (MTPA) block first determines the optimal flux level according to
the iterative method described in [4]. Depending on the motor speed and DC link voltage the desired
motor flux may have to be further reduced to respect the maximal available inverter voltage. This is
achieved by the Flux Weakening block, which also ensures that there is enough voltage margin for the
regulators to handle transients.
With the desired flux determined, the set-point for the torque producing current component I∗qs can be
established. Its value may have to be further reduced to ensure that the inverter current limit is re-
spected and the maximal load angle not exceeded. The limit value for I∗qs is generated by the Current
and Load-Angle Limiter block, which also contains a basic PI controller.
The Vector Control block then compares the set-points of flux and current with the actual quantities and
calculates the appropriate voltage vector to be applied to the machine. While the control of the flux is
fully decoupled, the current control is affected by the flux level and motor speed. A feed-forward term is
therefore required to assist the PI in the current/torque path.
Since the motor flux cannot be directly measured, its amplitude and angle must be estimated by means
of an observer. The method described in [5] has been realized for this purpose in the Flux Observer
block. The observed flux is a fusion of a current-based magnetic model and a voltage-based integration,
with the former being dominant at low speeds where the integration may be inaccurate.

3 Simulation

Run the simulation with the model as provided and review the signals in the scope. The results of the
simulation are shown in Fig. 2 as a reference. Notice how the torque set-point of +100N · m is achieved
within the accuracy provided by the Flux Observer. For the first −50ms (1) the torque can be produced
at the ideal MTPA flux level. However, as the machine speed increases beyond the base speed, the flux
level has to be reduced and the quadrature current increased (2), until eventually the current limit is
reached (3). The torque set-point is subsequently reversed to −100N ·m, causing the machine to deceler-
ate.
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Figure 2: Simulation results showing different important points at (1), (2) and (3)
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