Power Supplies

Type 2 and Type 3 Compensator Analysis for Power Supplies

This PLECS demo model analyzes the performance of Type 2 and Type 3 analog compensators used in power supply units (PSUs). The analyzed PSU is a buck converter with modeled-in inductor and capacitor non-idealities. The role of the capacitor and its effective series resistance (ESR) on the plant zero and poles is discussed. Furthermore, the compensators' performance is analyzed with respect to the phase margin, system bandwidth, and rate of change in gain at the crossover frequency.

Single-Phase Battery Charger

This PLECS demo model shows a grid-connected battery charger with cascaded AC/DC and DC/DC converters. The AC/DC converter is regulated by a digital PI controller to achieve power factor correction (PFC) and maintain the DC bus voltage at 300 VDC. The DC/DC converter is designed to provide a maximum 120 VDC output at a power rating of 1.4 kW.

Neutral-Point Clamped Converter

This PLECS demo model illustrates a neutral-point clamped (NPC), three-level voltage-source inverter. The NPC topology has been adopted for high power applications as it can achieve better harmonic reduction than traditional two-level voltage source inverters and the associated control strategies help to minimize semiconductor losses. This model is designed to deliver power to a 50 Hz, 130 VRMS grid from a dynamic DC source.

PFC Converter and Controller

Active power factor correction (PFC) is used extensively in AC-DC converters since it allows the converter to meet harmonic standards without the need for a bulky and costly input filter that normally accompanies a passive AC-DC converter. In this application example, a single phase boost-type 600 W PFC converter is modeled in PLECS.

Pages