
electrical engineering software

Plexim GmbH  info@plexim.com  www.plexim.com
PLECS

 U

ser M
anual Version 3.4

THE SIMULATION PLATFORM FOR

POWER ELECTRONIC SYSTEMS

PIL-FOC Demo for C2000 MCUs Version 2.0

How to Contact Plexim:

+41 44 533 51 00 Phone%
+41 44 533 51 01 Fax

Plexim GmbH Mail)
Technoparkstrasse 1
8005 Zurich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

PIL-FOC Demo for C2000 MCUs

© 2015 by Plexim GmbH

The software PLECS described in this manual is furnished under a license
agreement. The software may be used or copied only under the terms of the
license agreement. No part of this manual may be photocopied or reproduced
in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their re-
spective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii
Software Requirements . 1

1 Getting Started 3
Configuring the Hardware . 4

28069 controlSTICK . 4
28335 controlCARD . 4
Docking Station . 4

Loading the Firmware . 4
Configuring the PLECS Model . 5

PIL Target . 5
Testing the Communication . 6
PIL Block . 7

Running the PLECS Model . 10

2 Processor-in-the-Loop 11
Motivation . 11
How PIL Works . 12
PIL Modes . 14
Configuring PLECS for PIL . 15
Target Manager . 15

Communication Links . 16
PIL Block . 18

Contents

3 PIL Framework 23
Overview . 23

PIL Prep Tool . 24

Probes . 24

Read Probes . 24

Override Probes . 26

Calibrations . 29

Code Identity . 29

Remote Agent . 30

Communication Callbacks . 31

Serial Communication . 31

Parallel Communication . 31

Framework Integration and Execution 32

Principal Framework Calls . 32

Control Callback . 36

Target Mode Switching . 37

Simulation Start and Termination 38

Control Dispatching . 39

Task Synchronization at Start of Simulation 41

Framework Configuration . 41

Configuration Constants . 42

Initialization Constants . 43

4 TI C2000 Peripheral Models 45
Introduction . 45

Enhanced Pulse Width Modulator (ePWM) Type 1 47

Supported Submodules and Functionalities 48

Time-Base (TB) Submodule . 49

Counter-Compare (CC) Submodule 51

Action-Qualifier (AQ) Submodule . 52

Event-Trigger (ET) Submodule . 56

iv

Contents

Dead-Band Submodule . 58

Enhanced Pulse Width Modulator (ePWM) Type 4 60

Supported Submodules and Functionalities 61

Time-Base (TB) Submodule . 62

Counter-Compare (CC) Submodule 64

Action-Qualifier (AQ) Submodule . 65

Event-Trigger (ET) Submodule . 69

Dead-Band Submodule . 72

Analog Digital Converter (ADC) Type 2 75

ADC Module Overview . 76

ADC Converter with Result Registers 77

ADC Sampling Mode . 78

ADC Sequencer Mode . 79

ADC Trigger and Interrupt Logic . 81

Summary of PLECS Implementation 82

Analog Digital Converter (ADC) Type 3 84

ADC Module Overview . 85

ADC Converter with Result Registers 86

ADC Reference Voltage Generator 86

ADC Sample Generation Logic . 87

ADC Input Circuit . 90

ADC Interrupt Logic . 91

Analog Digital Converter (ADC) Type 4 93

ADC Module Overview . 95

ADC Converter and Result Register 95

ADC SOC Arbitration & Control . 97

ADC Input Circuit . 100

ADC Interrupt Logic . 101

Post-Processing Blocks . 103

Enhanced Capture (eCAP) Type 0 . 108

eCAP Module Operated in Capture Mode 109

v

Contents

Event Prescaler . 109

Edge Polarity Select and Capture Control 110

eCAP Module Operated in APWM Mode 111

eCAP Interrupts . 111

eCAP Counter Update . 112

Summary of PLECS Implementation 112

5 Embedded Application 115
Importing the CCS Demo Project . 115

Configuring the Project . 115

Rebuilding the Project . 116

Project Structure . 117

Device Support . 117

Linker Files . 117

Initialization and Task Dispatching 118

Control Law . 119

Communication Interface . 119

PIL Functionality . 119

vi

Before You Begin

This document contains instructions on how to test and evaluate the PLECS
Processor-In-the-Loop (PIL) functionality in the context of a field-oriented mo-
tor control application.

Software Requirements

The demonstration is designed to be executed on a Windows machine (32-bit
or 64-bit) with the following software installed:

• PLECS Standalone or Blockset (version 3.7 or higher)
• Code Composer Studio (CCS) v5.5 – Download from ti.com.
• C2Prog (version 1.7 or higher)– Download from codeskin.com.

A license is required to run PLECS and activate the PIL package. You can
request such a license from Plexim at plexim.com. Copy the license file
license.dat that will be supplied to you into the directory in which you have
installed PLECS.

http://ti.com
http://codeskin.com
http://plexim.com

Before You Begin

2

1

Getting Started

This chapter provides a hands-on demonstration of how control-code executing
on a TI C2000 Piccolo or Delfino device can be tied into a PLECS simulation.
More details about the Processor-in-the-Loop (PIL) concept and how embedded
applications can be enabled for PIL are provided in subsequent chapters.

The project is based on a basic Field Oriented Control (FOC) application, with
the embedded code controlling the switches of a three-phase inverter powering
a permanent magnet (PM) machine.

FOC demo model

The sample code is designed to execute on a 28069 controlSTICK or 28335
controlCARD with serial communication over USB.

1 Getting Started

Configuring the Hardware

28069 controlSTICK

No special configurations are required.

28335 controlCARD

SW1 must be in the “OFF” position, pointing to the connector side of the con-
trolCARD to allow serial communication over the FTDI chip.

All SW2 switches should be “ON”, pointing towards the upper edge of the
card.

Docking Station

J9 must be closed.

Loading the Firmware

Connect the JTAG/SCI USB port to your PC. Open the Windows Device Man-
ager and confirm the enumeration of a COM port.

You may have to install the FTDI drivers if the port is not enumerated.

COM port listed in device manager

Depending on your hardware, either of the pre-compiled executables
FOC_28069.ehx or FOC_28335.ehx must be loaded.

4

Configuring the PLECS Model

In C2Prog, select the ehx-file and configure the port to XDS100v2.

Flashing the controlSTICK

Click the Program button.

Once the reflashing completes, power-cycle the processor. Confirm that the fol-
lowing LED is blinking:

• On 28069 controlSTICK: LD2
• On 28335 controlCARD: Red LED in the corner of the board

Configuring the PLECS Model

Start PLECS.

PIL Target

We now configure a PIL Target by means of the Target Manager. Open the
target manager using the Window menu item Target Manager.

5

1 Getting Started

Target configuration

Click the + button and provide a name for the target. Next, select the Sym-
bol file associated with the target by clicking the . . . button. The sym-
bol file corresponds to the binary produced by the TI codegen tools. Select
FOC_28069.out or FOC_28335.out, depending on your hardware.

The remaining target configuration is the communication link. Select
FTD2XX from the Device type combo box. Then click on Scan and select the
second port (typically ending with B) that is being detected.

Testing the Communication

The target configuration can easily be verified by clicking the Properties but-
ton. This establishes communication with the target and displays diagnostics
information in a new dialog window, as shown below.

Target properties

Confirm that the symbol file matches the firmware on the target. The Target
mode should be Ready for PIL.

6

Configuring the PLECS Model

PIL Block

Now open the model named FOC_pil and double-click on the PIL block. Select
the target that you defined in the target manager from the Target combo box.

Notice how the PIL block has been configured for an external trigger input.
This allows the execution of the PIL block and associated embedded control
code to be triggered by the ADC end-of-conversion (EOC) event. The ADC, in
turn, is triggered by an ePWM start-of-conversion (SOC) event in this exam-
ple.

PIL block general configuration

Activate the Inputs tab and see how the PIL block has been configured for
the following three (3) inputs.

• ControlVars.IdSet,IqSet – Direct and quadrature current set-points (to be
controlled by PI).

• AdcOvrProbes.ADCRESULT0,1,2 – ADC conversion results (two currents and
one voltage).

• ControlVars.fluxPosition, ControlVars.we – Position and speed of rotor.

The names of the signals listed above correspond to the variable names in the
embedded code. As explained in subsequent chapters, a variable must be con-
figured as an Override Probe to be used as a PIL block input. Notice how mul-
tiple Override Probes can be multiplexed into one input.

7

1 Getting Started

PIL block inputs

PIL block outputs

The PIL block has been further configured for one (1) output (Outputs tab):

• ControlVars.ePWM_CmpU,V,W – ePWM peripheral compare register values.

8

Configuring the PLECS Model

Again, the signal names correspond to the variable names in the embedded
code. Variables must be configured as a Read Probe (or Override Probe) to be
used as PIL block outputs. Notice how three Read Probes have been multi-
plexed into the same output.

Also accessible through the PIL block are the embedded code Calibrations.
This tabs permits modifying and tuning settings in the embedded code, such
as filter coefficients and regulator gains. Shown in the image below is an ex-
ample in which the Calib.KpD Calibration is modified from its default value.

PIL block calibrations

9

1 Getting Started

Running the PLECS Model

We can now run the simulation by pressing Ctrl-T or selecting Start from the
Simulation menu.

Observe how the embedded control algorithm is maintaining tight current
regulation as the motor accelerates and the DC input voltage makes a step
change.

PIL simulation result

10

2

Processor-in-the-Loop

As a separately licensed feature, PLECS offers support for Processor-in-the-
Loop (PIL) simulations, allowing the execution of control code on external
hardware tied into the virtual world of a PLECS model.

At the PLECS level, the PIL functionality consists of a specialized PIL block
that can be found in the Processor-in-the-loop library, as well as the Target
Manager, accessible from the Window menu. Also included with the PIL
library are high-fidelity peripheral models of MCUs used for the control of
power conversion systems.

On the embedded side, a PIL Framework library is provided to facilitate the
integration of PIL functionality into your project.

Motivation

When developing embedded control algorithms, it is quite common to be test-
ing such code, or portions thereof, by executing it inside a circuit simulator.
Using PLECS, this can be easily achieved by means of a C-Script or DLL
block. This approach is referred to as Software-in-the-loop (SIL). A SIL sim-
ulation compiles the embedded source code for the native environment of the
simulation tool (e.g. Win64) and executes the algorithms within the simulation
environment.

The PIL approach, on the other hand, executes the control algorithms on the
real embedded hardware. Instead of reading the actual sensors of the power
converter, values calculated by the simulation tool are used as inputs to the
embedded algorithm. Similarly, outputs of the control algorithms executing
on the processor are fed back into the simulation to drive the virtual environ-
ment. Note that SIL and PIL testing are also relevant when the embedded
code is automatically generated from the simulation model.

2 Processor-in-the-Loop

One of the major advantages of PIL over SIL is that during PIL testing, ac-
tual compiled code is executed on the real MCU. This allows the detection of
platform-specific software defects such as overflow conditions and casting er-
rors. Furthermore, while PIL testing does not execute the control algorithms
in true real-time, the control tasks do execute at the normal rate between two
simulation steps. Therefore, PIL simulation can be used to detect and ana-
lyze potential problems related to the multi-threaded execution of control algo-
rithms, including jitter and resource corruption. PIL testing can also provide
useful metrics about processor utilization.

How PIL Works

At the most basic level, a PIL simulation can be summarized as follows:

Principle of a PIL simulation

• Input variables on the target, such as current and voltage measurements,
are overridden with values provided by the PLECS simulation.

• The control algorithms are executed for one control period.
• Output variables on the target, such as PWM peripheral register values,

are read and fed back into the simulation.

12

How PIL Works

We refer to variables on the target which are overridden by PLECS as Over-
ride Probes. Variables read by PLECS are called Read Probes.

While Override Probes are set and Read Probes are read the dispatching of
the embedded control algorithms must be stopped. The controls must remain
halted while PLECS is updating the simulated model. In other words, the con-
trol algorithm operates in a stepped mode during a PIL simulation. However,
as mentioned above, when the control algorithms are executing, their behavior
is identical to a true real-time operation. We therefore call this mode of opera-
tion pseudo real-time.

Let us further examine the pseudo real-time operation in the context of an
embedded application utilizing nested control loops where fast high-priority
tasks (such as current control) interrupt slower lower-priority tasks (such as
voltage control). An example of such a configuration with two control tasks is
illustrated in the figure below. With every hardware interrupt (bold vertical
bar), the lower priority task is interrupted and the main interrupt service rou-
tine is executed. In addition, the lower priority task is periodically triggered
using a software interrupt. Once both control tasks have completed, the sys-
tem continues with the background task where lowest priority operations are
processed. The timing in this figure corresponds to true real-time operation.

Control Task 1

Control Task 2

Background Task

1 2 3 4 5 6

Nested Control Tasks

The next figure illustrates the timing of the same controller during a PIL sim-
ulation, with the stop and go symbols indicating when the dispatching of the
control tasks is halted and resumed.

After the hardware interrupt is received, the system stops the control dis-
patching and enters a communication loop where the values of the Override
Probes and Read Probes can be exchanged with the PLECS model. Once a
new step request is received from the simulation, the task dispatching is

13

2 Processor-in-the-Loop

Control Task 1

Control Task 2

Background Task

2 3

STOP

1

STOP STOP

Pseudo real-time operation

restarted and the control tasks execute freely during the duration of one in-
terrupt period. This pseudo real-time operation allows the user to analyze the
control system in a simulation environment in a fashion that is behaviorally
identical to a true real-time operation. Note that only the dispatching of the
control tasks is stopped. The target itself is never halted as communication
with PLECS must be maintained.

PIL Modes

The concept of using Override Probes and Read Probes allows tying actual
control code executing on a real MCU into a PLECS simulation without the
need to specifically recompile it for PIL.

You can think of Override Probes and Read Probes as the equivalent of test
points which can be left in the embedded software as long as desired. Soft-
ware modules with such test points can be tied into a PIL simulation at any
time.

Often, Override Probes and Read Probes are configured to access the registers
of MCU peripherals, such as analog-to-digital converters (ADCs) and pulse-
width modulation (PWM) modules. Additionally, specific software modules, e.g.
a filter block, can be equipped with Override Probes and Read Probes. This
allows unit-testing the module in a PIL simulation isolated from the rest of
the embedded code.

To permit safe and controlled transitions between real-time execution of the
control code, driving an actual plant, and pseudo real-time execution, in con-

14

Configuring PLECS for PIL

junction with a simulated plant, the following two PIL modes are distin-
guished:

• Normal Operation – Regular target operation in which PIL simulations
are inhibited.

• Ready for PIL – Target is ready for a PIL simulation, which corresponds
to a safe state with the power-stage disabled.

The transition between the two modes can either be controlled by the embed-
ded application, for example based on a set of digital inputs, or from PLECS
using the Target Manager.

Configuring PLECS for PIL

Once an embedded application is equipped with the PIL framework, and ap-
propriate Override Probes and Read Probes are defined, it is ready for PIL
simulations with PLECS.

PLECS uses the concept of Target Configurations to define global high-level
settings that can be accessed by any PLECS model. At the circuit level, the
PIL block is utilized to define lower level configurations such as the selection
of Override Probes and Read Probes used during simulation.

This is explained in further detail in the following sections.

Target Manager

The high-level configurations are made in the Target Manager, which is ac-
cessible in PLECS by means of the corresponding item in the Window menu.
The target manager allows defining and configuring targets for PIL simula-
tion, by associating them with a symbol file and specifying the communication
parameters. Target configurations are stored globally at the PLECS level and
are not saved in *.plecs or Simulink files. An example target configuration is
shown in the figure below.

15

2 Processor-in-the-Loop

Target Manager

The left hand side of the dialog window shows a list of targets that are cur-
rently configured. To add a new target configuration, click the button marked
+ below the list. To remove the currently selected target, click the button
marked -. You can reorder the targets by clicking and dragging an entry up
and down in the list.

The right hand side of the dialog window shows the parameter settings of
the currently selected target. Each target configuration must have a unique
Name.

The target configuration specifies the Symbol file and the communication
link settings.

The symbol file is the binary file (also called “object file”) corresponding to the
code executing on the target. PLECS will obtain most settings for PIL simu-
lations, as well as the list of Override Probes and Read Probes and their at-
tributes, from the symbol file.

Communication Links

A number of links are supported for communicating with the target. The de-
sired link can be selected in the Device type combo box. For communication
links that allow detecting connected devices, pressing the Scan button will
populate the Device name combo box with the names of all available devices.

16

Target Manager

Serial Device

The Serial device selection corresponds to conventional physical or virtual
serial communication ports. On a Windows machine, such ports are labeled
COMn, where n is the number of the port.

FTDI Device

If the serial adapter is based on an FTDI chip, the low-level FTDI driver can
be used directly by selecting the FTD2XX option. This device type offers im-
proved communication speed over the virtual communication port (VCP) asso-
ciated with the FTDI adapter.

TCP/IP Socket

The communication can also be routed over a TCP/IP socket by selecting the
TCP Socket device type.

TCP/IP Communication

In this case the Device name corresponds to the IP address (or URL) and
port number, separated by a colon (:).

17

2 Processor-in-the-Loop

TCP/IP Bridge

The TCP Bridge device type provides a generic interface for utilizing custom
communication links. This option permits communication over an external ap-
plication which serves as a “bridge” between a serial TCP/IP socket and a cus-
tom link/protocol.

Target Properties

By pressing the Properties button, target information can be displayed as
shown in the figure below.

Target Properties

In addition to reading and displaying information from the symbol file, PLECS
will also query the target for its identity and check the value against the one
stored in the symbol file. This verifies the device settings and ensures that the
correct binary file has been selected. Further, the user can request for a target
mode change to configure the embedded code to run in Normal Operation
mode or in Ready for PIL mode.

PIL Block

The PIL block ties a processor into a PLECS simulation by making Override
Probes and Read Probes, configured on the target, available as input and out-
put ports, respectively.

18

PIL Block

PIL Block

A PIL block is associated with a target defined in the target manager, which
is selected from the Target combo box. The Configure. . . button provides a
convenient shortcut to the target manager for configuring existing and new
targets.

PIL Block General Tab

The execution of the PIL block can be triggered at a fixed Discrete-Periodic
rate by configuring the Sample time to a positive value. As with other
PLECS components, an Inherited sample time can be selected by setting the
parameter to -1 or [-1 0].

A trigger port can be enabled using the External trigger combo box. This is
useful if the control interrupt source is part of the PLECS circuit, such as an
ADC or PWM peripheral model.

19

2 Processor-in-the-Loop

Typically, an Inherited sample time is used in combination with a trigger
port. If a Discrete-Periodic rate is specified, the trigger port will be sampled
at the specified rate.

Similar to the DLL block, the Output delay setting permits delaying the out-
put of each simulation step to approximate processor calculation time.

Note Make sure the value for the Output delay does not exceed the sample
time of the block, or the outputs will never be updated.

A delay of 0 is a valid setting, but it will create direct-feedthrough between
inputs and outputs.

PIL Block Inputs Tab

The PIL block extracts the names of Override Probes and Read Probes from
the symbol file selected in the target configuration and presents lists for selec-
tion as input and output signals, as shown in the figure above.

The number of inputs and outputs of a PIL block is configurable with the
Number of inputs and Number of outputs settings. To associate Over-

20

PIL Block

ride Probes or Read Probes with a given input or output, select an input/out-
put from the combo box on the right half of the dialog. Then drag the desired
Override Probes or Read Probes from the left into the area below or add them
by selecting them and clicking the > button. To remove an Override Probe or
Read Probe, select it and either press the Delete key or < button.

Note It is possible to multiplex several Override/Read Probe signals into one
input/output. The sequence can be reordered by dragging the signals up and
down the list.

Starting with PLECS 3.7, the PIL block allows setting initial conditions for
Override Probes.

Also new with PLECS 3.7 is the Calibrations tab, which permits modifying
embedded code settings such as regulator gains and filter coefficients.

PIL Block Calibrations Tab

Calibrations can be set in the Value column. If no entry is provided, the em-
bedded code will use the default value as indicated in the Default column.

21

2 Processor-in-the-Loop

22

3

PIL Framework

Plexim provides and maintains PIL Frameworks for specific processor families,
which encapsulate all the necessary embedded functionality for PIL operation.
Using the PIL framework, your C or C++ based embedded applications can be
enabled for PIL with minimal effort.

Currently, such frameworks and associated demo applications are available
for the Texas Instruments (TI) C2000™, ST Microelectronics 32bit F4 and the
Microchip dsPIC33F MCU families. However, support for other platforms can
be developed, as long as the following basic requirements are met:

• The code generation tools (compiler and linker) must be able to generate
binary files of the ELF format containing DWARF debugging information.

• The address width of the processor cannot exceed 32 bit.
• The least addressable unit (LAU) of the processor must be no larger than

16-bit.

Overview

The fundamental operation of a PIL simulation consists of overriding and
reading variables in the embedded application, and synchronizing the exe-
cution of the control task(s) with the simulation of a PLECS model. The PIL
framework therefore provides the following functionality:

• Read Probes for reading the values of variables in the embedded code exe-
cuting on the target and feeding the information into the simulation model.

• Override Probes for overriding variables in the embedded code with values
obtained from the simulation.

• A method to uniquely identify the software executing on the target.
• A remote agent, capable of communicating with PLECS and interpreting

commands related to PIL operation.

3 PIL Framework

• A mechanism for stopping and starting the execution of the control tasks.
• A means to provide configuration parameters to PLECS, such as the com-

munication baudrate.

Starting with PLECS 3.7, the PIL framework also supports Calibrations,
which are embedded–code parameters such as filter coefficients and regula-
tor gains. Calibrations can be modified in the PLECS environment during the
initialization of a PIL simulation and allow running multiple simulations with
different settings without the need for recompiling the embedded code (e.g. for
the tuning of regulators).

PIL Prep Tool

To facilitate defining and configuring PIL probes and calibrations, starting
with PLECS 3.7, a PIL Prep Tool utility is provided as part of the PIL frame-
work.

The PIL Prep Tool parses the embedded code for PIL specific macros, and au-
tomatically generates auxiliary files to be compiled and linked with the em-
bedded code. These auxiliary files contain functions for initializing probes and
calibrations, as well as special symbols which describe to PLECS the scaling
and formatting of the probes/calibrations. The generated files further include
a globally unique identifier (GUID) allowing PLECS to identify the embedded
code.

The PIL Prep Tool must be called as a pre-build step. Its integration into an
embedded project is specific to the compiler and integrated development envi-
ronment (IDE) used. Please refer to the PIL demo projects for more informa-
tion.

Probes

Read Probes

Read Probes are variables in the embedded code which are configured for read
access by PLECS. Any global variable can be configured as a Read Probe by
means of the PIL_READ_PROBE macro. For example, the statement below de-
fines and configures variable Vdc for read access by PLECS.

PIL_READ_PROBE(uint16_t , Vdc, 10, 5.0, "V");

24

Probes

The PIL_READ_PROBE macro results in a simple variable definition, e.g.
uint16_t Vdc, but is also recognized by the PIL Prep Tool, which places the
following statement in the auto generated file:

PIL_SYMBOL_DEF(Vdc, 10, 5.0, "V");

The PIL_SYMBOL_DEF macro expands into the definition of a specially format-
ted and statically initialized helper structure of type const.

typedef struct
{

int q; //!< fixed−point location
float ref; //!< reference value
char *unit; //!< unit string

} pil_var;

const pil_var PIL_V_Vdc = {10, 5.0, "V"}

PLECS searches for PIL_V symbols when parsing the binary file selected in
the target manager, and uses the information of the PIL_V symbols to trans-
late between the raw values stored in the Read Probe and the corresponding
physical value to be used in the simulation.

In the above example, the global variable Vdc is configured as a Q10 with a
reference of 5V. Hence, an integer value of 512 in this variable will be con-
verted by PLECS to 512

210 ∗ 5V = 2.5V.

A fixed point variable can be configured as a unitless number by using a refer-
ence value of 1.0 and setting an empty string (“”) for the unit.

The same approach can be used to configure floating point variables as Read
Probes.

PIL_READ_PROBE(float, MotorSpeed, 0, 1.0, "rpm");

The third parameter of the PIL_READ_PROBE macro, i.e. the fixed point loca-
tion, is ignored with probed floating point variables. However, it is possible to
specify reference values for floating point variables. For example, the macro
below configures MotorSpeed with a reference of 1800 rpm. Hence, a value of
0.5 in this variable will be converted to 0.5 ∗ 1800rpm = 900rpm.

It is also possible to configure structure members, as shown below.

25

3 PIL Framework

struct BATTERY {
PIL_READ_PROBE(int16_t, voltage, 10, 5.0, "V");

};

Override Probes

Override Probes, i.e. variables in the embedded code that can be overridden by
PLECS, are defined with the PIL_OVERRIDE_PROBE macro as illustrated below.

struct BATTERY {
PIL_OVERRIDE_PROBE(int16_t, voltage, 10, 5.0, "V");

};

struct BATTERY MyBattery;

The PIL_OVERRIDE_PROBE macro expands into a variable definition that is aug-
mented by two helper symbols which permit the MyBattery.voltage variable
to be overridden by PLECS.

struct BATTERY {
int16_t voltage;
int16_t voltage_probeV;
int16_t voltage_probeF;

};

While parsing a binary file for symbol information, PLECS detects variables
with matching _probeF and _probeV definitions and identifies those as Over-
ride Probes.

In addition, the PIL Prep Tool will recognize the PIL_OVERRIDE_PROBE macro
and generate the following auxiliary macro as described in the Read Probe
section:

PIL_SYMBOL_DEF(MyBattery_voltage, 10, 5.0, "V");

Note Only variables defined as Override Probes are configurable as inputs for
the PIL block.

26

Probes

An Override Probe is similar to a toggle switch with the following two states:

• Feedthrough – The Override Probe value is provided by the embedded ap-
plication

• Override – The Override Probe value is provided by PLECS

The state of an Override Probe can be switched dynamically at runtime and is
stored in the _probeF helper variable.

With this approach, the same build of the embedded application can be used
to control actual hardware or be tested in a PIL simulation, by simply switch-
ing the mode of Override Probes, without recompiling.

To properly interact with PLECS, the embedded code must access the Over-
ride Probes exclusively by the following set of macros:

Override Probe Macros

Macro Description

INIT_OPROBE(probe) Initializes an Override Probe.
Must be called during the ini-
tialization of the embedded
program.

SET_OPROBE(probe, value) Assigns a value to an Override
Probe.

The PIL Prep Tool will generate a function called PilInitOverrideProbes()
which contains INIT_OPROBE calls for all Override Probes. This function must
be called during the initialization phase of the embedded code before any
Override Probes are used.

If an Override Probe is in the feedthrough state, the value assigned to the
macro is written into probe. Otherwise, the override value supplied by
PLECS is used, which is stored in the _probeV helper variable.

An example for adding Override Probes to existing code is given in the follow-
ing two listings.

27

3 PIL Framework

Battery.voltage = measureBattVolt();

PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
&ControlVars.Id, &ControlVars.Iq, \
ControlVars.fluxPosSin, ControlVars.fluxPosCos);

Original code without use of Override Probes

Assume that during PIL simulations, we would like to override the vari-
able Battery.voltage as well as the values of ControlVars.Id and
ControlVars.Iq. While the battery voltage is updated by a simple write ac-
cess, the Id and Iq variables are modified by the PLX_VECT_parkRot(...) func-
tion via pointers, which need special handling for the SET_OPROBE macro inte-
gration.

The next listing illustrates how SET_OPROBE is properly used in this example.

SET_OPROBE(Battery.voltage, measureBattVolt());

int16_t id, iq;

PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
&id, &iq, \
ControlVars.fluxPosSin, ControlVars.fluxPosCos);

SET_OPROBE(ControlVars.Id, id);
SET_OPROBE(ControlVars.Iq, iq);

Use of Override Probes

For the battery voltage, the assignment can simply be replaced by the
SET_OPROBE macro. For the Id and Iq values, auxiliary variables are used,
updated by the PLX_VECT_parkRot(...) function, and subsequently assigned
to the Override Probes.

Note The SET_OPROBE macro must be used whenever a value is assigned to an
Override Probe. A direct assignment using the equal (=) statement will result in
unpredictable behavior.

28

Calibrations

Calibrations

Calibrations are variables used to configure algorithms in the embedded code,
such as filter coefficients, thresholds, timeouts and regulator gains.

The PIL framework provides the PIL_CALIBRATION macro for a convenient def-
inition of such calibrations. For example, the statement below declares and
configures variable Kp as a PIL calibration.

PIL_CALIBRATION(int16_t, Kp, 10, 5.0, "Ohm", 0, 10.0, 0.5);

The first five parameters of the PIL_CALIBRATION macro are identical to the
definition of a Read Probe. Accordingly, the macro expands into a simple vari-
able definition uint16_t Kp.

The additional three parameters define the allowable range of values for the
Calibration as well as its default value.

In the above example, the allowable range for Kp is 0 – 10Ω. Upon initializa-
tion, Kp is set to 0.5Ω.

The PIL_CALIBRATION macro is interpreted by the PIL Prep Tool to gener-
ate a PIL_SYMBOL_CAL_DEF macro. Similar to PIL_SYMBOL_DEF, this macro
produces the necessary information for PLECS to properly interpret and
handle the calibration. The PIL Prep Tool also generates a function called
PilInitCalibrations() which sets all Calibrations to default values. This
function must be called during the initialization phase of the embedded code
before any calibrations are used. It is also important that this function be
called in the PIL_CLBK_TERMINATE_SIMULATION callback to revert changes
made during a PIL simulation.

Code Identity

PLECS accesses Override Probes, Read Probes and Calibrations by address
(as opposed to name). The PIL block extracts the address of a given variable
from the debugging information contained in the binary file supplied to the
Target Manager. It is therefore important to ensure the selected binary file
matches the code that is actually executing on the target, or erroneous mem-
ory locations will be accessed. This is achieved by comparing a globally unique

29

3 PIL Framework

identifier (GUID) stored in the binary file with the value reported by the tar-
get. PLECS performs this check at the beginning of a simulation, as well as
when the PIL block is opened. As explained in section “Target Manager” (on
page 15), the target manager can be used to verify the match of the selected
binary file.

The GUID is generated at compile time by the PIL Prep Tool. Additionally,
macros for the compile time, and log-on name of the person who compiled the
code are created.

#define CODE_GUID {0xA8,0x45,0x11,0xDE,0x05,0x4C,0xAC,0x41}
#define COMPILE_TIME_DATE_STR "Sun May 30 10:11:43 2010"
#define USER_NAME "john doe"

The value of CODE_GUID is passed to the PIL framework during initialization;
see “Framework Configuration” (on page 41). The value must also be assigned
to the PIL_D_Guid constant as follows:

PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);

The other two macros can be used for diagnostics purposes using PIL con-
stants, as demonstrated in section “Configuration Constants” (on page 42).

Remote Agent

The remote agent services the communication link with PLECS and processes
commands received from PLECS to access Override Probes and Read Probes,
and to step the control code during a PIL simulation.

The remote agent supports both parallel and serial communications, but is
agnostic of the hardware specific details of the communication link.

The user of the PIL framework is responsible for implementing the driver for
a specific communication link, i.e. for configuration of hardware and basic re-
ception and transmission of data.

30

Remote Agent

Communication Callbacks

The PIL framework interacts with the application specific communication
driver by communication callback functions. Two callbacks exist:
• CommCallback() – Called at each system interrupt from

PIL_beginInterruptCall().
• BackgroundCommCallback() – Periodically called from

PIL_backgroundCall().
A given communication link might use either or both callbacks for its imple-
mentation. For implementing serial or parallel data exchange with the frame-
work, the user needs to utilize the input and output functions presented in the
following sections. The callback functions are registered with the framework
as described on page 41.

Serial Communication

For serial communication, the remote agent utilizes a simple network layer
with message framing and error checking, making the protocol suitable for a
wide range of links such as RS-232, RS-485, TCP/IP and CAN.
To ensure no characters are dropped during a serial communication, the Comm-
Callback() from the interrupt should be used to service the link.
A typical implementation of a serial communication callback is shown in the
SCI callback listing.
Notice the use of the following two functions:
• PIL_RA_serialIn(...) – For the reception of characters.
• PIL_RA_serialOut(...) – For the transmission of characters.

Parallel Communication

For parallel communication, complete messages are directly exchanged with
the framework as 16-bit integer arrays. The parallel link does not utilize any
framing or checksum. This link is therefore suited for exchanging messages
via shared memory where risk of transmission errors is negligible.
Parallel communications are typically serviced by the callback made from the
background loop.
• PIL_RA_parallelIn(...) – For the reception of a message.
• PIL_RA_parallelOut(...) – For the transmission of a message.

31

3 PIL Framework

void SCIPoll()
{

while(SciaRegs.SCIFFRX.bit.RXFFST != 0)
{
// a character has been received
PIL_RA_serialIn((int16)SciaRegs.SCIRXBUF.all);

}

int16_t ch;
if(SciaRegs.SCICTL2.bit.TXRDY == 1)
{
// link is ready for transmission
if(PIL_RA_serialOut(&ch))
{
SciaRegs.SCITXBUF = ch;

}
}

}

SCI callback

Framework Integration and Execution

Principal Framework Calls

The PIL framework provides the following two principal functions which must
be called periodically by the embedded application to enable PIL functionality:

• PIL_beginInterruptCall() – Framework call from interrupt.
• PIL_backgroundCall(...) – Framework call from background loop.

The PIL_beginInterruptCall() must be added at the beginning of the main
interrupt service routine, while the PIL_backgroundCall(...) is called peri-
odically from the background task.

The actions performed by those calls depends on whether a PIL simulation is
running or not.

In the following, the concept of the PIL integration is further explained for a
system with nested control tasks (see code snippet below).

In this example, the first control task is triggered by a hardware interrupt re-
lated to the system counter. A divider is used to dispatch a second, lower pri-
ority task. When the divider reaches a specified value, the second control task
is dispatched by a software interrupt.

32

Framework Integration and Execution

/**
* Main interrupt routine

*/
Void TickFxn(UArg arg)
{

PIL_beginInterruptCall();

// fast control task
ControlTask1();

// slow control task
divider++;
if(divider == TASK2_PERIOD)
{
divider = 0;
Swi_post(Swi);

}
}

/**
* Software interrupt for slow control task

*/
Void SwiFxn(UArg arg0, UArg arg1)
{

ControlTask2();
}

/**
* Background task

*/
Void BackgroundTaskFxn(Void)
{

PIL_backgroundCall();
}

Control Task Dispatching

33

3 PIL Framework

Real-time Pseudo Real-time

PIL_beginInterruptCall CommCallback CommCallback
BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

PIL_backgroundCall BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

N/A

Mode-specific actions during framework execution

Assuming the slow task takes longer than a hardware interrupt period, the
second control task is interrupted several times before its execution is fin-
ished.

Now let us examine the operation of the framework in both real-time and
pseudo real-time mode.

The figure on page 34 shows the framework operation in non-PIL (real-time)
mode.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

CommCallback

PIL_backgroundCall

PIL framework during real-time operation

At the beginning of the hardware interrupt service routine, the
PIL_beginInterruptCall() is executed, which, in real-time mode, only calls

34

Framework Integration and Execution

the registered CommCallback function. As already mentioned, this callback
should be used to service the link for a serial communication to ensure no
characters are dropped.

Note During real-time operation, the PIL framework must have a minimal
influence on the timing of the dispatched control tasks. Therefore the Comm-
Callback function must be implemented as efficiently as possible.

As its name suggests, PIL_backgroundCall(...) function is executed from the
background loop, which in turn calls the BackgroundCommCallback(), if con-
figured. The PIL_backgroundCall(...) also parses incoming messages that
are buffered by the communication callback functions, and processes PIL com-
mands.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PILCLBK_STOP_TIMERS CLBK_START_TIMERS

PLECS Step

Communication loop

STOP

PIL framework during pseudo real-time operation

The next figure shows the system behavior during a PIL simulation, i.e. in
pseudo real-time mode, where control task execution is paced and synchro-
nized with the simulation of a PLECS model.
At the start of the hardware interrupt service routine, the task dispatching
stops and the system enters a communication loop.

35

3 PIL Framework

In this loop, both communication callbacks and the command parsing func-
tions are executed. This is different from true real-time mode, where the back-
ground communication callback and the command parsing functions are called
from the background loop.

Once a request for a new control step is received, the framework resumes
the control task dispatching and continues in free mode until the next
hardware interrupt occurs. Note that in pseudo real-time operation, the
PIL_backgroundCall() has no effect.

Control Callback

The transition between different operating modes as well as the pseudo real-
time operation require application-specific actions, implemented by means of a
Control Callback.

For example, when entering the Ready for PIL mode, the power actua-
tion must be turned off, e.g. by disabling the PWM outputs. Also, during
a PIL simulation the peripherals providing the timing to the control algo-
rithms must be stopped and restarted, as indicated by the arrows labeled
PIL_CLBK_STOP_TIMERS and PIL_CLBK_START_TIMERS.

These control actions are provided by a single callback function registered dur-
ing the framework initialization, and subsequently executed with an argument
specifying the specific action to be taken.

Consequently, the implementation of this callback typically consists of a
switch statement as shown below:

The following control-callback actions are defined and called during the frame-
work execution:

• PIL_CLBK_ENTER_NORMAL_OPERATION_REQ – Called when the target mode
“Normal Operation” has been requested. The application must indicate that
it has entered normal operation by executing PIL_inhibitPilSimulation().

• PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ – Called when the target mode
“Ready for PIL” has been requested. The application must confirm that it
is ready for PIL simulations by executing PIL_allowPilSimulation().

• PIL_CLBK_PREINIT_SIMULATION – Called before transitioning to a PIL simu-
lation. Can be used to reconfigure task dispatching, for example if an MCU
coprocessor such as the TI CLA is to be tied into the PIL loop. Interrupts
are disabled when this call is made.

36

Framework Integration and Execution

void PilCallback(PIL_CtrlCallbackReq_t aCallbackReq)
{
switch(aCallbackReq)
{

case PIL_CLBK_STOP_TIMERS:
//application specific code
break;

case PIL_CLBK_START_TIMERS:
//application specific code
break;
.
.
.

default:
//catching an undefined callback
break;

}
}

• PIL_CLBK_INITIALIZE_SIMULATION – Called at the beginning of a PIL simu-
lation. Used to reset the controller(s) and control task dispatching to initial
conditions.

• PIL_CLBK_TERMINATE_SIMULATION – Called at the end of a PIL simulation.
• PIL_CLBK_STOP_TIMERS – Called at the beginning of the control interrupt

when in PIL mode (pseudo real-time operation). Used to stop all timers and
counters related to the control tasks.

• PIL_CLBK_START_TIMERS – Called immediately before resuming the control
task(s) when in PIL mode (pseudo real-time operation). Used to restart all
timers and counters related to the control tasks.

In the following sections, the different actions are further described in context
of when they are called during the operation of the PIL framework. Please
also review the example projects provided by Plexim for further details and
control callback implementation examples.

Target Mode Switching

As described in the section “PIL Modes” (on page 14) the PIL framework dis-
tinguishes between the two target modes.

In Normal Operation mode, the target executes in true real-time operation
driving the load with an active power stage. PIL simulations are inhibited

37

3 PIL Framework

Normal Operation

do/Realtime Application

Ready for PIL

do/wait for start of PIL Simulation

PIL_allowPilSimulation() PIL_inhibitPilSimulation()

PIL_requestNormalMode
-> PIL_CLBK_ENTER_NORMAL_OPERATION_REQ

PIL_requestReadyMode
-> PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ

PIL target modes and mode change requests

in this mode due to the power stage being active. A PIL simulation can only
be started if the target is in Ready for PIL mode, which corresponds to a safe
state in which the power stage is disabled. As explained in the prior section,
the code for enabling or disabling the power stage is application specific and
must be provided by the user via the corresponding control callback.
A target mode change can be requested either from the Target Manager or
from the embedded application. Depending on the requested mode, the frame-
work executes the appropriate callback. If the requested mode is equal to the
current mode or while a PIL simulation is active, a mode request has no ef-
fect.
Target mode change requests are confirmed by the application code by calling
the PIL_allowPilSimulation() and PIL_inhibitPilSimualtion() functions.
Those functions also have no effect while a PIL simulation is active. Please
refer to the example projects provided by Plexim for further details and imple-
mentation examples.

Simulation Start and Termination

When running multiple PIL simulations and comparing results it is impor-
tant that all simulation-runs begin with identical initial conditions. This is

38

Framework Integration and Execution

achieved by means of the PIL_CLBK_INITIALIZE_SIMULATION request, which is
issued via the control callback at the beginning of a simulation.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Wait for 1. PIL Block Evaluation

First Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_INITIALIZE_SIMULATION

Start of PIL Simulation

Sending Initial Read Probe values

Start of a PIL Simulation

Note The initial conditions of Read Probes are fed into the PLECS model at
simulation time t=0. However, these values will be immediately modified if the
PIL block is also triggered at time t=0 and the output delay of the block is set to
zero.

At the end of a PIL simulation, a PIL_CLBK_TERMINATE_SIMULATION request is
issued prior to returning to real-time operation.

Control Dispatching

During a PIL simulation, the target operates in a pseudo real-time fashion
with the execution of the control tasks being paced and synchronized with the
simulation.
In the example shown in the next figure, the interrupt for Control Task 1 is
based on the period of a hardware timer. Therefore, the timer period directly
determines the amount of time available for the execution of the control tasks
until the next interrupt occurs.

39

3 PIL Framework

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Last Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_TERMINATE_SIM

Sending Final Read Probes PIL Simulation Finished PIL_CLBK_START_TIMERS

End of a PIL Simulation

Control Task 1

Control Task 2

Background Task

1 2 3

Timer Counter

4 5 6

Real-time operation with timer

To preserve the timing integrity in stepped mode, the hardware timer needs
to be halted at the beginning of the communication loop and resumed when a
step request is received, resulting in pseudo real-time operation.

By means of the CLBK_STOP_TIMERS and CLBK_START_TIMERS callback
actions, the user is able to provide the necessary functionality specific to the
actual application.

40

Framework Configuration

Control Task 1

Control Task 2

Background Task

Timer Counter

2 3

STOP

1

STOP STOP

Pseudo real-time operation with periodically stopped timer

Task Synchronization at Start of Simulation

When control algorithms are distributed over multiple (nested) tasks, it is im-
portant to synchronize the start of a PIL simulation with the sequencing of
the control tasks. In other words, after a PIL simulation has been started, a
predictable and repeatable amount of time should elapse until the first execu-
tion of each nested task.

Such synchronization can be achieved by actively resetting the task dispatcher
when the PIL_CLBK_INITIALIZE_SIMULATION request is received, as illustrated
below.

Framework Configuration

The initialization and configuration of the PIL framework consists of three
mandatory steps as well as a number of optional configurations.

• PIL_init() – Must be executed before any calls to the framework are made.
• PIL_setLinkParams(...) – Specifies the GUID to the framework and regis-

ters the interrupt callback for communication.
• PIL_setCtrlCallback(...) – Registers the control callback for PIL simula-

tions.

41

3 PIL Framework

void PilCallback(PIL_CtrlCallbackReq_t aCallbackReq)
{
switch(aCallbackReq)
{

case PIL_CLBK_INITIALIZE_SIMULATION:
//application specific code
...
//active synchronization of control task dispatching
divider = TASK2PERIOD −1;
break;
.
.
.

default:
//catching an undefined callback
break;

}
}

Active task synchronization via simulation initialization callback

PIL_init();
PIL_setLinkParams(\

(unsigned char*)&PIL_D_Guid[0], \
(PIL_CommCallbackPtr_t)SCIPoll

);
PIL_setCtrlCallback((PIL_CtrlCallbackPtr_t)PilCallback);

Optional configurations are as follows:

• PIL_setNodeAddress(...) – Configures node address for multi-drop serial
communications.

• PIL_setBackgroundCommCallback(...) – Registers the background commu-
nication callback.

Configuration Constants

The PIL_CONST_DEF macro is used for making settings and diagnostics infor-
mation available to PLECS. At a minimum, Guid[] must be defined. If a se-
rial link is used for communication between PLECS and the target, then it is
also necessary to specify to PLECS the communication rate by means of the

42

Initialization Constants

BaudRate definition. Optionally, further constants can be defined as shown be-
low.

PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);
PIL_CONST_DEF(unsigned char, CompiledDate[], COMPILE_TIME_DATE_STR);
PIL_CONST_DEF(unsigned char, CompiledBy[], USER_NAME);

PIL_CONST_DEF(uint32_t, BaudRate, BAUD_RATE);
PIL_CONST_DEF(uint16_t, StationAddress, 0);
PIL_CONST_DEF(char, FirmwareDescription[], "Demo project");

Note Depending on the build settings it might be necessary to provide specific
compiler/linker instructions (e.g. #pragma RETAIN) to prevent PIL definitions
and constants that are not referenced by the code from being removed from the
binary file.

Initialization Constants

The PIL framework also provides a mechanism to define “Initialization Con-
stants” (or “Configurations”) that can be read from the symbol file at the be-
ginning of a simulation and used to configure the PLECS circuit.

PIL_CONFIG_DEF macro is used for defining such constants. They must be of
integer or float type. Strings and arrays are not supported.

PIL_CONFIG_DEF(uint32_t, SysClk, SYSCLK_HZ);
PIL_CONFIG_DEF(uint32_t, PwmFrequency, PWM_HZ);
PIL_CONFIG_DEF(uint32_t, ControlFrequency, CONTROL_HZ);
PIL_CONFIG_DEF(uint16_t, ProcessorPartNumber, 28069);

To retrieve the values of the initialization constants in PLECS use the
plecs(’get’, ’path to PIL block’, ’InitConstants’) command either in a
m-file or in the model initialization commands.

43

3 PIL Framework

initConstants = plecs('get','./PIL','InitConstants');

Processor = initConstants.ProcessorPartNumber;
SysClk = initConstants.SysClk;
Fs = initConstants.ControlFrequency;
Fpwm = initConstants.PwmFrequency;

44

4

TI C2000 Peripheral Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical
user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

4 TI C2000 Peripheral Models

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

46

Enhanced Pulse Width Modulator (ePWM) Type 1

Enhanced Pulse Width Modulator (ePWM) Type 1

The PLECS peripheral library provides two blocks for the TI ePWM type 0/1
module. One block has a register-based configuration mask and a second block
features a graphical user interface. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during simulation and correspond to the
configurations which the embedded software makes during the initialization
phase. Inputs are dynamically changeable while the simulation is running.
The fixed configuration can be entered either using a register-based approach
or a graphical user interface, while the dynamic values supplied at the inputs
must correspond to raw register values. The figure below shows the block and
its parameters for the register-based version.

Register based ePWM module model

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

47

4 TI C2000 Peripheral Models

Supported Submodules and Functionalities

The ePWM type 0/1 module consists of several submodules:

Submodules of the ePWM type 1 module [1]

The PLECS ePWM model accurately reflects the most relevant features of the
following submodules:

• Time-Base submodule
• Counter-Compare submodule
• Action-Qualifier submodule
• Dead-Band submodule
• Event-Trigger submodule

48

Enhanced Pulse Width Modulator (ePWM) Type 1

Time-Base (TB) Submodule

This submodule realizes a counter that can operate in three different modes
for the generation of asymmetrical and symmetrical PWM signals. The three
modes, up-count, down-count, and up-down-count, are visualized below.

Counter modes and resulting PWM frequencies [1]

In up-count mode, the counter is incremented from 0 to a counter period
TBPRD using a counter clock with period TTBCLK . When the counter reaches
the period, the subsequent count value is reset to zero and the sequence is re-
peated. When the counter is equal to zero or the period value, the submodule
produces a pulse of one counter clock period, which, together with the actual
counter direction, is sent to the subsequent Action Qualifier submodule.

The period of the timer clock can be calculated based on the system clock
(SYSCLKOUT) and the two clock dividers (CLKDIV and HSPCLKDIV) by:

TTBCLK =
CLKDIV ·HSPCLKDIV

SYSCLKOUT

49

4 TI C2000 Peripheral Models

The resulting PWM period further depends on the counting mode, the counter
period (TBPRD) and the counter clock period as depicted in the figure above.

While the system clock and the period counter value are separately defined
in the mask parameters, the counter mode and the clock divider are jointly
configured in the TBCTL register.

7 6 5 4 3 2 1 0

15 14 13 12 10 9 8

CTRMODEPHSENPRDLDSYNCOSELSWFSYNCHSPCLKDIV

HSPCLKDIVCLKDIVPHSDIRFREE, SOFT

TBCTL Register Configuration

The CLKDIV and HSPCLKDIV cells select the desired clock dividers and the
CTRMODE cell defines the counter mode. Only counter modes 00, 01, and 10
are supported by the PLECS ePWM model.

Example Configuration – Step 1

This example is based on the parameter mask shown at the beginning of this
chapter and will be further developed in subsequent sections. The TBCTL reg-
ister is configured to:

TBCTL = 1024 =̂ 0 0 0 0 0 1︸ ︷︷ ︸
CLKDIV

0 0︸︷︷︸
HSPCLKDIV

0 0 0 0 0 0 0 0︸︷︷︸
CTRMODE

According to this configuration, the time base submodule is operating in the
up-count mode with a timer clock period twice the system-clock period. The
resulting PWM signal has the following period:

TPWM = (TBPRD + 1) · CLKDIV ·HSPCLKDIV

SYSCLKOUT
= 187.525 µs.

50

Enhanced Pulse Width Modulator (ePWM) Type 1

Counter-Compare (CC) Submodule

This submodule is responsible for generating the pulses CTR = CMPA and
CTR = CMPB used by the Action-Qualifier submodule. In a typical applica-
tion, the compare values change continuously during operation and therefore
need to be part of the dynamic configuration (block inputs). The PLECS im-
plementation only supports the shadow mode for the CMPx registers, i.e. the
content of a CMPx register is only transferred to the internal configuration at
reload events. The reload events are specified in the CMPCTL register.

7 6 5 4 3 2 1 0

15 10 9 8

LOADBMODESHDWAMODEReserved

SHDWAFULLReserved SHDWBFULL

LOADAMODESHDWBMODE Reserved

CMPCTL Register Configuration

For efficiency, the PLECS ePWM model only supports the following combina-
tions of counter mode and reload events:

CTRMODE LOADAMODE LOADBMODE

Up-count CTR = 0 CTR = 0

Down-count CTR = PRD CTR = PRD

Up-down-count CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

Furthermore, only coinciding configurations for LOADAMODE and LOADB-
MODE are supported.

In the example configuration, the CMPCTL register needs to be set to 0 be-
cause the counter is operating in up-count mode.

51

4 TI C2000 Peripheral Models

Action-Qualifier (AQ) Submodule

This submodule sets the EPWMx outputs based on the flags generated by
the Time-Base and Counter-Compare submodules. The AQCTLx registers
configure the actions to be performed at the different events. Similiar to the
CMPx registers, the AQCTLx registers are operated in shadow mode and are
reloaded at both the zero and the period event.

ePWM timing example [1]

The figure above shows an example (Case 2) where the ePWM output is set
to high at the CTR = CMPA event. As depicted, an output change always lags
the event by one counter clock period. The following shows the structure of
the AQCTL register.

7 6 5 4 3 2 1 0

15 12 11 10 9 8

ZROPRDCAUCAD

CBUCBDReserved

AQCTL Register Configuration

Actions depend on the counter direction. For example, the register cell CBD
defines what happens to the corresponding ePWMx output when the counter
equals CMPB, when the counter is counting down. The following configura-
tions exist:
• 00 - No Action
• 01 - Force ePWMx output low
• 10 - Force ePWMx output high

52

Enhanced Pulse Width Modulator (ePWM) Type 1

• 11 - Toggle ePWMx output

If events occur simultaneously, the ePWM module respects a priority assign-
ment based on the counter mode. The following figures show the Action-
Qualifier prioritization.

Action-Qualifier prioritization in up-down-count mode [1]

Action-Qualifier prioritization in up-count mode [1]

Action-Qualifier prioritization in down-count mode [1]

Notice how software-forced events have the highest priority in all three count
modes. Software forcing is configured by the Action-Qualifier-Continous-
Software-Force-Register (AQCSFRC), provided as an input to the PLECS block
to allow dynamic register configuration.

53

4 TI C2000 Peripheral Models

7 4 3 2 1 0

15 8

CSFACSFB

Reserved

Reserved

AQCSFRC Register Configuration

The figure above shows the relevant cells of the register where CSFA and
CSFB can be used to force an output. The following configurations are sup-
ported:

• 00 - Forcing Disabled
• 01 - Force a continuous low on ePWMx
• 10 - Force a continuous high on ePWMx
• 11 - Forcing Disabled

As illustrated in the previous ePWM timing example, the change of an eP-
WMx output lags the change of AQCSFRC by one counter clock period. Sim-
ilar to the previously described registers with dynamic configuration, the
AQCSFRC register is operated in shadow mode. The reload events can be de-
fined with the AQSFRC register.

7 6 5 4 3 2 1 0

15 8

ACTSFAOTSFAOTSFBRLDCSF

Reserved

ACTSFB

AQSFRC Register Configuration

The supported modes for RLDCSF are listed below.

• 00 - CTR = Zero
• 01 - CTR = PRD
• 10 - CTR = Zero or CTR = PRD

Immediate mode for loading is not supported due to implementation efficiency
reasons.

54

Enhanced Pulse Width Modulator (ePWM) Type 1

Example Configuration – Step 2

The following figure shows an example using the actions defined by the
AQCTL registers. Refer to [1] for a detailed explanation of the action symbols.

Desired ePWMA and ePWMB output signals [1]

To realize the above ePWM signals, the dynamic configuration must be set as
follows:

CMPA = 3500,CMPB = 2000,AQCSFRC = 0

Furthermore, the Action-Qualifier must be set as shown below:

AQCTLA = 18 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 0︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 1︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

AQCTLB = 258 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 1︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 0︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

55

4 TI C2000 Peripheral Models

Event-Trigger (ET) Submodule

This submodule utilizes the signals generated by the Time Base and Counter
Compare submodules to generate events (pulses) at the ePWMSOCx outputs.
Such pulses can trigger an ADC conversion or invoke the execution of a con-
trol algorithm or PIL block. For each ePWMSOC channel, the Event Trigger
module provides an internal 2-bit counter which permits a downsampling of
events. The following diagram shows the internal structure for the example of
SOCA.

Event Trigger Logic [1]

As can be seen, the counter is being incremented using one of the source sig-
nals on the right-hand side. The incrementing source signal is selected by the
SOCxSEL field. An SOC pulse is generated when the SOCxCNT reaches its
configurable period (SOCxPRD) and pulse generation is activated by the SOCx
flag. The configuration for both the SOCA and SOCB portion of the Event
Trigger is set by the registers ETSEL and ETPS, which are realized as static
parameters of the PLECS model.
The ETSEL register has the following structure.

7 4 3 2 0

15 14 12 11 10 8

INTSELINTENRESERVED

SOCASELSOCAENSOCBSELSOCBEN

ETSEL Register Configuration

The SOCxEN bits activate or deactivate the SOCx pulses. The SOCxSEL cells

56

Enhanced Pulse Width Modulator (ePWM) Type 1

determine the source for the event trigger counter. Note, SOCxSEL = 000 is
not supported in the model.

This figure shows the structure of the ETPS register.

7 4 3 2 1 0

15 14 13 12 11 10 9 8

INTPRDINTCNTRESERVED

SOCAPRDSOCACNTSOCBPRDSOCBCNT

ETPS Register Configuration

The SOCxCNT cells allow initialization of the event counter. The SOCxPRD
bits determine the number of events that must occur before an SOCx pulse is
generated. Refer to [1] for detailed information regarding the configuration of
the ETPS register.

Example Configuration – Step 3

A possible use case for the Event-Trigger submodule is to generate a SOCA
pulse every second time the TB-counter meets the CMPA value. To achieve
this behavior, the ET is configured as follows.

ETSEL = 0xC00 =̂ 0 0 0 0 1︸︷︷︸
SOCAEN

1 0 0︸︷︷︸
SOCASEL

0 0 0 0 0 0 0 0

This setting enables the SOCA pulses and uses the CTR = CMPA event for
incrementing the ET-counter. Note that SOCB pulses are completely disabled
in this example.

ETPS = 512 =̂ 0 0 0 0 0 0︸︷︷︸
SOCACNT

1 0︸︷︷︸
SOCAPRD

0 0 0 0 0 0 0 0

57

4 TI C2000 Peripheral Models

Dead-Band Submodule

The role of this submodule is to add programmable delays to rising and falling
edges of the ePWM signals and to generate signal pairs with configurable po-
larity. The figure below depicts the internal structure of the Dead-Band sub-
module.

Dead-Band Logic [1]

As shown, the PWMx signals from the Action-Qualifier submodule are post-
processed based on the DBCTL register settings. Furthermore, the delay
times are programmables by the registers DBRED and DBFED for the ris-
ing and falling edge delay, respectively. The structure of the DBCTL register
is shown in the following block diagram.

7 6 5 4 3 2 1 0

15 14 8

OUT_MODEPOLSELIN_MODEReserved

ReservedHALFCYCLE

DBCTL Register Configuration

The submodule register cells allow for the following settings:
• HALFCYCLE - Delay counters increment with half TB-counter clock period
• IN_MODE - Choose source for delay counters; can also be used for output

switching

58

Enhanced Pulse Width Modulator (ePWM) Type 1

• POL_SEL - Invert output polarity
• OUT_MODE - Enables Dead-Band bypassing for both outputs

Refer to [1] for detailed information regarding the configuration of the DBCTL
register.

Example Configuration – Step 4

In the sample configuration, the signal EPWMB is selected as the source for
both delay counters. Further, both the rising and falling edge of the outputs
are delayed by 10 counter clock periods and the polarities are not inverted.
The DBCTL register therefore should be configured as follows.

DBCTL = 0b110011 =̂ 0 0 0 0 0 0 0 0 0 0 1 1︸︷︷︸
IN_MODE

0 0︸︷︷︸
POL_SEL

1 1︸︷︷︸
OUT_MODE

With the HALFCYCLE bit set to zero, the DBRED and DBFED must be con-
figured to:

DBRED = 10 , DBFED = 10

59

4 TI C2000 Peripheral Models

Enhanced Pulse Width Modulator (ePWM) Type 4

The PLECS peripheral library provides two blocks for the TI ePWM type 4
module. One block has a register-based configuration mask and a second block
features a graphical user interface. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during simulation and correspond to the
configurations which are initialized by the embedded software at startup.
Inputs are dynamically changeable while the simulation is running. The
fixed configuration can be entered either using a register-based approach or
a graphical user interface, while the dynamic values supplied at the inputs
must correspond to raw register values. The figure below shows the block and
its parameters for the register-based version.

Register based ePWM module model

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

60

Enhanced Pulse Width Modulator (ePWM) Type 4

Supported Submodules and Functionalities

The ePWM type 4 module consists of several submodules:

Submodules of the ePWM type 4 module [4]

The PLECS ePWM model accurately reflects the most relevant features of the
following submodules:

• Time-Base submodule
• Counter-Compare submodule
• Action-Qualifier submodule
• Dead-Band submodule
• Event-Trigger submodule

61

4 TI C2000 Peripheral Models

Time-Base (TB) Submodule

This submodule realizes a counter that can operate in three different modes
for the generation of asymmetrical and symmetrical PWM signals. The three
modes, up-count, down-count, and up-down-count, are visualized below.

Counter modes and resulting PWM frequencies [4]

In up-count mode, the counter is incremented from 0 to a counter period
TBPRD using a counter clock with period TTBCLK . When the counter reaches
the period, the subsequent count value is reset to zero and the sequence is re-
peated. When the counter is equal to zero or the period value, the submodule
produces a pulse of one counter clock period, which, together with the actual
counter direction, is sent to the subsequent Action Qualifier submodule.

In the type 4 ePWM module, the system clock (SYSCLKOUT) can be divided
further to generate the EPWM clock (EPWMCLK). This is determined by the
EPWMCLKDIV bit in the PERCLKDIVSEL register and the system clock by
the following formula:

62

Enhanced Pulse Width Modulator (ePWM) Type 4

EPWMCLK =
SYSCLKOUT

1 + EPWMCLKDIV

The period of the timer-base module clock (TBCLK) can be calculated based
on the EPWM clock (EPWMCLK) and the two clock dividers (CLKDIV and
HSPCLKDIV) by:

TTBCLK =
CLKDIV ·HSPCLKDIV

EPWMCLK

The resulting PWM period further depends on the counting mode, the counter
period (TBPRD) and the counter clock period as depicted in the figure above.
While the system clock and the period counter value are separately defined
in the mask parameters, the counter mode and the clock divider are jointly
configured in the TBCTL register.

7 6 5 4 3 2 1 0

15 14 13 12 10 9 8

CTRMODEPHSENPRDLDSYNCOSELSWFSYNCHSPCLKDIV

HSPCLKDIVCLKDIVPHSDIRFREE, SOFT

TBCTL Register Configuration

The CLKDIV and HSPCLKDIV cells select the desired clock dividers and the
CTRMODE cell defines the counter mode.
Only counter modes 00, 01, and 10 are supported by the PLECS ePWM type 4
model.

Example Configuration – Step 1

This example is based on the parameter mask shown at the beginning of this
chapter and will be further developed in subsequent sections.
The EPWM-clock period is set equal to the system-clock period by configuring
the EPWMCLKDIV bit to zero.
The TBCTL register is configured to:

TBCTL = 1024 =̂ 0 0 0 0 0 1︸ ︷︷ ︸
CLKDIV

0 0︸︷︷︸
HSPCLKDIV

0 0 0 0 0 0 0 0︸︷︷︸
CTRMODE

According to this configuration, the time-base submodule is operating in the
up-count mode with a timer clock period twice the EPWM-clock period. The
resulting PWM signal has the following period:

TPWM = (TBPRD + 1) · CLKDIV ·HSPCLKDIV

EPWMCLK
= 187.525 µs.

63

4 TI C2000 Peripheral Models

Counter-Compare (CC) Submodule

This submodule is responsible for generating the pulses CTR = CMPA, CTR =
CMPB, CTR = CMPC and CTR = CMPD used by the Action-Qualifier submod-
ule. In a typical application, the compare values change continuously during
operation and therefore need to be part of the dynamic configuration (block
inputs). The PLECS implementation only supports the shadow mode for the
CMPx registers, i.e. the content of a CMPx register is only transferred to the
internal configuration at reload events.

The reload events are specified in the CMPCTL and CMPCTL2 registers.

7 6 5 4 3 2 1 0

15 10 9 8

LOADBMODESHDWAMODEReserved

SHDWAFULLSHDWBFULL

LOADAMODESHDWBMODE Reserved

11

LOADASYNCReserved
121314

LOADBSYNC

CMPCTL Register Configuration

7 6 5 4 3 2 1 0

15 10 9 8

LOADDMODESHDWCMODEReserved

SHDWCFULLSHDWDFULL

LOADCMODESHDWDMODE Reserved

11

LOADCSYNCReserved
121314

LOADDSYNC

CMPCTL Register Configuration

For efficiency, the PLECS ePWM model only supports the following combina-
tions of counter mode and reload events:

CTRMODE LOADAMODE LOADBMODE LOADCMODE LOADDMODE

Up-count CTR = 0 CTR = 0 CTR = 0 CTR = 0

Down-count CTR = PRD CTR = PRD CTR = PRD CTR = PRD

Up-down-count CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

Furthermore, only coinciding configurations for LOADAMODE, LOADB-
MODE, LOADCMODE and LOADDMODE are supported.

In the example configuration, the CMPCTL and CMPCTL2 registers need to
be set to 0 because the counter is operating in up-count mode.

64

Enhanced Pulse Width Modulator (ePWM) Type 4

Action-Qualifier (AQ) Submodule

This submodule sets the EPWMx outputs based on the flags generated by the
Time-Base and Counter-Compare submodules. The AQCTLx and AQCTLx2
registers configure the actions to be performed at the different events. Simil-
iar to the CMPx registers, the AQCTLx and AQCTLx2 registers are operated
in shadow mode and are reloaded at both the zero and the period events.

ePWM timing example [4]

The figure above shows an example (Case 2) where the ePWM output is set
to high at the CTR = CMPA event. As depicted, an output change always lags
the event by one counter clock period. The following shows the structure of
the AQCTLx register.

7 6 5 4 3 2 1 0

15 12 11 10 9 8

ZROPRDCAUCAD

CBUCBDReserved

AQCTLx Register Configuration

An output change can also be made using the T1 and T2 events. The
AQCTLx2 register can be configured to change output when a T1 or T2 event
occurs and depending on the direction of the counter at that instant. It is as-
sumed that an output change always lags the event by one counter clock pe-
riod. The following figure shows the structure of the AQCTLx2 register.

Actions depend on the counter direction. For example, the register cell CBD
defines what happens to the corresponding ePWMx output when the counter

65

4 TI C2000 Peripheral Models

7 6 5 4 3 2 1 0

15 12 11 10 9 8

T1UT1DT2UT2D

Reserved
1314

AQCTLx2 Register Configuration

equals CMPB, and when the counter is counting down. The following configu-
rations exist:
• 00 - No Action
• 01 - Force ePWMx output low
• 10 - Force ePWMx output high
• 11 - Toggle ePWMx output
If events occur simultaneously, the ePWM module respects a priority assign-
ment based on the counter mode. The following figures show the Action-
Qualifier prioritization.

Action-Qualifier prioritization in up-down-count mode [4]

Action-Qualifier prioritization in up-count mode [4]

Notice how software-forced events have the highest priority in all three count
modes. Software forcing is configured by the Action-Qualifier-Continous-
Software-Force-Register (AQCSFRC), provided as an input to the PLECS block
to allow dynamic register configuration.

66

Enhanced Pulse Width Modulator (ePWM) Type 4

Action-Qualifier prioritization in down-count mode [4]

The figure below shows the relevant cells of the register where CSFA and
CSFB can be used to force an output. The following configurations are sup-
ported:

7 4 3 2 1 0

15 8

CSFACSFB

Reserved

Reserved

AQCSFRC Register Configuration

• 00 - Forcing Disabled
• 01 - Force a continuous low on ePWMx
• 10 - Force a continuous high on ePWMx
• 11 - Forcing Disabled

As illustrated in the previous ePWM timing example, the change of an
ePWMx output lags the change of AQCSFRC by one counter clock period.
Similar to the previously described registers with dynamic configuration, the
AQCSFRC register is operated in shadow mode. The reload events can be de-
fined with the AQSFRC register.

7 6 5 4 3 2 1 0

15 8

ACTSFAOTSFAOTSFBRLDCSF

Reserved

ACTSFB

AQSFRC Register Configuration

The supported modes for RLDCSF are listed below.

• 00 - CTR = Zero
• 01 - CTR = PRD
• 10 - CTR = Zero or CTR = PRD

67

4 TI C2000 Peripheral Models

Immediate mode for loading is not supported due to implementation efficiency
reasons.

Example Configuration – Step 2

The following figure shows an example using the actions defined by the
AQCTLx registers. Refer to [4] for a detailed explanation of the action sym-
bols.

Desired ePWMA and ePWMB output signals [4]

To realize the above ePWM signals, the dynamic configuration must be set as
follows:

CMPA = 3500;CMPB = 2000;AQCSFRC ,AQCTLA2 ,AQCTLB2 = 0

Furthermore, the Action-Qualifier must be set as shown below:

AQCTLA = 18 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 0︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 1︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

AQCTLB = 258 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 1︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 0︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

68

Enhanced Pulse Width Modulator (ePWM) Type 4

Event-Trigger (ET) Submodule

This submodule utilizes the signals generated by the Time Base and Counter
Compare submodules to generate events (pulses) at the ePWMSOCx outputs.
Such pulses can trigger an ADC conversion or invoke the execution of a con-
trol algorithm or PIL block. For each ePWMSOC channel, the Event Trigger
module provides an internal 4-bit counter which permits a downsampling of
events. The following diagram shows the internal structure for the example of
SOCA.

Event Trigger Logic [4]

As can be seen, the counter is being incremented using one of the source sig-
nals on the right-hand side.

The figures below show the structure of the ETPS and ETSOCPS registers.

7 4 3 2 1 0

15 14 13 12 11 10 9 8

INTPRDINTCNT

SOCAPRDSOCACNTSOCBPRDSOCBCNT

SOCPSSEL
56

INTPSSELRESERVED

ETPS Register Configuration

The SOCPSSEL bit determines whether SOCxCNT and SOCxPRD take con-
trol or whether SOCxCNT2 and SOCxPRD2, in the ETSOCPS register, take
control.

69

4 TI C2000 Peripheral Models

7 4 3 0

15 12 11 8

SOCACNT2 SOCAPRD2

SOCBCNT2 SOCBPRD2

ETSOCPS Register Configuration

The SOCxPRD and SOCxPRD2 bits determine the number of events that
must occur before an SOCx pulse is generated. Refer to [4] for detailed infor-
mation regarding the configuration of the ETPS and ETSOCPS registers.

The ETCNTINIT register is used to initialize the counter for the SOCA and
SOCB events at startup. The structure of the register is shown below.

7 4 3 0

15 12 11 8

SOCACNT2 SOCAPRD2

SOCBCNT2 SOCBPRD2

ETSOCPS Register Configuration

The ETSEL register has the following structure.

7 4 3 2 0

15 14 12 11 10 8

INTSELINTEN

SOCASELSOCAENSOCBSELSOCBEN

RESERVED SOCBSELCMPINTSELCMP SOCASELCMP

ETSEL Register Configuration

The SOCxEN bits activate or deactivate the SOCx pulses. The SOCxSEL cells
determine the source for the event trigger counter. The SOCxSELCMP cells
determine if CMPA and CMPB or CMPC and CMPD are used for SOCxSEL
counter.

Note, SOCxSEL = 000 is not supported in the model.

The incrementing source signal is selected by the SOCxSEL field and the
SOCPSSEL bit determines which counter to use. An SOC pulse is generated
when the SOC counter (SOCxCNT or SOCxCNT2) reaches its configurable pe-
riod (SOCxPRD or SOCxPRD2) and pulse generation is activated by the SOCx
flag. The configuration for both the SOCA and SOCB portion of the Event
Trigger is set by the registers ETSEL, ETPS, ETSOCPS, and ETCNTINIT
registers, which are realized as static parameters of the PLECS model.

70

Enhanced Pulse Width Modulator (ePWM) Type 4

Example Configuration – Step 3

A possible use case for the Event-Trigger submodule is to generate a SOCA
pulse every second time the TB-counter meets the CMPA value. To achieve
this behavior, the ET is configured as follows.

ETSEL = 0xC00 =̂ 0 0 0 0 1︸︷︷︸
SOCAEN

1 0 0︸︷︷︸
SOCASEL

0 0 0 0︸︷︷︸
SOCASELCMP

0 0 0 0

This setting enables the SOCA pulses and uses the CTR = CMPA event for
incrementing the ET-counter. Note that SOCB pulses are completely disabled
in this example.

ETPS = 512 =̂ 0 0 0 0 0 0 1 0︸︷︷︸
SOCAPRD

0 0 0︸︷︷︸
SOCPSSEL

0 0 0 0 0

71

4 TI C2000 Peripheral Models

Dead-Band Submodule

The role of this submodule is to add programmable delays to rising and falling
edges of the ePWM signals and to generate signal pairs with configurable po-
larity. The figure below depicts the internal structure of the Dead-Band sub-
module.

Dead-Band Logic [4]

As shown, the PWMx signals from the Action-Qualifier submodule are post-
processed based on the DBCTL register settings. Furthermore, the delay
times are programmable by the registers DBRED and DBFED for the rising
and falling edge delays, respectively. The structure of the DBCTL register is
shown in the following block diagram.

7 6 5 4 3 2 1 0

15 14 8

OUT_MODEPOLSELIN_MODELOADREDMODE

HALFCYCLE DEDB_MODE OUTSWAP
13 12 11 10 9

LOADFEDMODESHDWDBFED
MODE

SHDWDBRED
MODE

DBCTL Register Configuration

The submodule register cells allow for the following settings:

72

Enhanced Pulse Width Modulator (ePWM) Type 4

• HALFCYCLE - Delay counters increment with half TB-counter clock period
• DEDB_MODE - Apply falling and rising edge delays to input signal
• OUTSWAP - Swap output one or both signals
• LOADFEDMODE - Determine when to load DBFED register from shadow

to active register
• LOADREDMODE - Determine when to load DBRED register from shadow

to active register
• IN_MODE - Choose source for delay counters; can also be used for output

switching
• POL_SEL - Invert output polarity
• OUT_MODE - Enables Dead-Band bypassing for both outputs

DBFED and DBRED are loaded to the active register from the shadow reg-
ister on the events selected by LOADFEDMODE and LOADREDMODE bits,
respectively. Only shadow mode operation is supported in the PLECS type 4
ePWM module.

In addition to the classic operation available on the type 1 ePWM module, the
type 4 ePWM module provides additional operating modes. Refer to [4] for de-
tailed information regarding the configuration of the DBCTL register and the
additional operating modes.

Additional deadband operation modes [4]

73

4 TI C2000 Peripheral Models

Example Configuration – Step 4

In the sample configuration, the signal EPWMB is selected as the source for
both delay counters. Further, both the rising and falling edges of the outputs
are delayed by 10 counter clock periods and the polarities are not inverted.
The DBCTL register therefore should be configured as follows.

DBCTL = 0x0033 =̂ 0 0 0 0 0 0 0 0 0 0 1 1︸︷︷︸
IN_MODE

0 0︸︷︷︸
POL_SEL

1 1︸︷︷︸
OUT_MODE

With the HALFCYCLE, DEDB_MODE, OUTSWAP, LOADFEDMODE, and
LOADREDMODE bits set to zero, the DBRED and DBFED must be config-
ured to:

DBRED = 10 , DBFED = 10

74

Analog Digital Converter (ADC) Type 2

Analog Digital Converter (ADC) Type 2

The PLECS peripheral library provides two blocks for the TI ADC type 2 mod-
ule, one with a register based configuration mask and a second with a graph-
ical user interface. The figure below shows the register-based version of the
PLECS type 2 ADC module.

Register-based ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups:

• ePWM_SOCx - input ports to trigger ADC conversions
• MAX_CONVx - input ports for number of conversions for sequencers
• RST_SEQx - input ports to reset sequencers
• ADCINA/B - input ports for measurements
• ADCRESULTx - output ports to access conversion results
• ADC INT_SEQx - output ports for ADC interrupt triggered at end of se-

quence of conversions

75

4 TI C2000 Peripheral Models

ADC Module Overview

The PLECS ADC model implements the most relevant features of the MCU
peripheral.

Overview of the type 2 ADC module in dual sequencer mode[2]

The ADC model implements the following features:

• ADC Converter with Result Registers

76

Analog Digital Converter (ADC) Type 2

• ADC Sampling Mode
• ADC Sequencer Mode
• ADC Trigger and Interrupt Logic

A section summarizing the differences of the PLECS type 2 ADC module as
compared to the actual type 2 ADC module is provided in the “Summary” (on
page 82) section.

ADC Converter with Result Registers

The type 2 ADC module contains a single 12-bit converter with dual sample-
and-hold (S/H) circuits. The ADC can be configured to perform a series of con-
versions of preselected input channels each time a start-of-conversion (SOC)
request is received. Once a conversion has completed, the result is stored in
one of the 16 result registers, ADCRESULT0 - ADCRESULT15, as 12 bit un-
signed integers. The content of the result registers is available at the output
ports of the model.

Note The Output Mode parameter allows the ADC results to be formatted as
unsigned integers or quantized doubles.

ADC Core Clock and Sample-and-Hold Clock [2]

The period of the ADC clock, ADCCLK, and therefore the time base for the
module, is determined based on the peripheral clock, HSPCLK, and is scaled
down by the ADCCLKPS[3:0] bits of the ADCTRL3 register. An extra clock
pre-scaler is provided with the CPS bit of the ADCTRL1 register.

The width of the sampling window in the ADC type 2 is controlled by the
ACQ_PS[3:0] bits in the ADCTRL1 register. The ADC sampling time can be

77

4 TI C2000 Peripheral Models

configured to be 1 - 8 cycles of the ADCCLK period. The figure above summa-
rizes the scaling of the ADC Core Clock and the S/H clock.

ADC Sampling Mode

The ADC type 2 module can be configured to operate in sequential or simulta-
neous sampling mode. In the sequential sampling mode the two S/H circuits
are operated independently. Any of the 16 input channels can be selected to be
sampled by either of the two S/H circuits by configuring the appropriate reg-
ister bit field CONVnn in the ADCCHSELSEQ1 - ADCCHSELSEQ4 registers.
The table below summarizes the input channel configuration using the CON-
Vnn bit field in sequential sampling mode.

CONVnn ADC Input Channel Selected

0000 ADCINA0

0001 ADCINA1

... ...

0111 ADCINA7

1000 ADCINB0

... ...

1111 ADCINB7

In simultaneous sampling mode, the S/H-A circuit can be configured to sam-
ple inputs ADCINA00 - ADCINA07 using the registers bit fields CONV00 -
CONV07. In this sampling mode, the MSB of CONVnn is ignored. The S/H-
B circuit will automatically sample the ADCINBnn input corresponding to the
ADCINAnn input that is chosen. For example, if the CONVnn register con-
tains the value 0110b, ADCINA6 is sampled by S/H-A and ADCINB6 is sam-
pled by S/H-B. If the value is 1001b, ADCINA1 is sampled by S/H-A and AD-
CINB1 is sampled by S/H-B.

The voltage in S/H-A is converted first, followed by the S/H-B voltage. The
result of the S/H-A conversion is placed in the current ADCRESULTn regis-
ter (e.g. ADCRESULT0). The result of the S/H-B conversion is placed in the
next ADCRESULTn register (e.g. ADCRESULT1). The next conversion will be
placed in the subsequent register (ADCRESULT2). The table above summa-
rizes the input channel configuration given by CONVnn.

78

Analog Digital Converter (ADC) Type 2

CONVnn Input pair

0000 ADCINA0 / ADCINB0

0001 ADCINA1 / ADCINB0

... ...

0111 ADCINA7 / ADCINB7

1000 ADCINA0 / ADCINB0

... ...

1111 ADCINA7 / ADCINB7

ADC Sequencer Mode

The ADC module consists of two 8-state sequencers (SEQ1 and SEQ2) that
can be operated independently in dual-sequencing mode or can be combined to
form one 16-state sequencer (SEQ1) in cascaded-sequencing mode. In dual-
sequencing mode the maximum number of conversions for SEQ1 is set by
MAX_CONV1[2:0] and SEQ2 by MAX_CONV2[2:0] bits in the ADCMAX-
CONV register. Cascaded-sequencing mode can be viewed as SEQ1 with 16
states instead of 8 where the maximum number of conversions is governed by
MAX_CONV1[3:0] in the ADCMAXCONV register.

Note In the PLECS ADC type 2 module, MAX_CONV1 and MAX_CONV2 are
inputs that are sampled at SOC trigger events. Both inputs are sampled at trig-
ger events ePWM_SOCA and ePWM_SOCB.

In the type 2 ADC, SOC requests received during an active sequence remain
pending. Pending SOC requests are fulfilled as soon as the sequencer is initi-
ated or immediately after an active sequence of conversions is finished. Addi-
tionally, in dual-sequencing mode, an SEQ1 conversion request is given higher
priority over an SEQ2 conversion request. For example, assume that the con-
verter is busy handling SEQ1 when an SOC request from SEQ2 occurs. The
converter will start SEQ2 immediately after completing the active sequence
of conversions. If another SOC conversion request from SEQ2 occurs before
the active sequence of conversion is finished, this additional SOC request for

79

4 TI C2000 Peripheral Models

SEQ2 is lost. However, if an SOC request for SEQ1 is received before the ac-
tive sequence of conversion is finished, then both SOC requests from SEQ1
and SEQ2 will remain pending. When the current SEQ1 completes its active
sequence, the SOC request for SEQ1 will be taken up immediately. The SOC
request for SEQ2 will remain pending.
The CONVnn bit field in the ADCCHSELSEQ1 - ADCCHSELSEQ4 registers
and the sampling mode, define the input pin to be sampled and converted for
the result register ADCRESULTnn. For further details of the two different
sampling modes and the conversion channel configuration, see section “ADC
Sampling Mode” (on page 78). The table below summarizes the sequencer dif-
ferences in the two sequencer modes. Details of the SOC trigger configuration
and the ADC interrupt configuration is discussed in section “ADC Interrupt
Logic” (on page 81).

Feature Single 8-state
sequencer 1

Single 8-state
sequencer 2

Cascaded 16-
state sequencer

SOC triggers ePWM SOCA ePWM SOCB ePWM SOCA,
ePWM SOCB

Maximum number of
auto conversions

8 8 16

Autostop at end-of-
sequence

Yes Yes Yes

Arbitration Priority High Low Not applicable

ADCCHSELSEQn
bit field assignment

CONV00 to
CONV07

CONV08 to
CONV15

CONV00 to
CONV15

In the PLECS ADC type 2 module, sequencer reset can be provided exter-
nally by the user. The inputs RST_SEQ1 and RST_SEQ2 are used to imme-
diately reset the sequencers, SEQ1 and SEQ2, respectively. At a reset event,
the ADC module will fulfill the request of any pending SOC request. If no
SOC requests are pending the ADC module remains in idle mode until the
next SOC trigger is received. For example, assume that the converter is busy
handling SEQ1 with pending triggers for SEQ1 and SEQ2. If a sequencer 1
reset is received during the conversion, the active conversion is immediately
stopped. After the reset, the converter is reinitialized by resetting the state
pointer to CONV00 and the conversion result pointer to ADCRESULT0. Once
the reinitialization process is completed, the pending SEQ1 trigger is cleared
and the pending SEQ1 conversion is started. However, if a sequencer 2 reset

80

Analog Digital Converter (ADC) Type 2

is received during the conversion, the SEQ1 conversion is not stopped immedi-
ately. The sequencer 2 reset would ensure that the SEQ2 state pointer is reset
to CONV08 and the conversion result pointer to ADCRESULT8 when the next
SEQ2 conversion occurs.

Additionally, the PLECS ADC type 2 module can be configured to reset the
sequencers internally at every or every other end-of-sequence. In this mode,
the inputs RST_SEQ1 and RST_SEQ2 are ignored. The sequencer cannot be
halted in mid sequence and must wait until an end-of-sequence (EOS) event
for the next series of conversions to start. An internal reset event at every
end-of-sequence would cause the state pointer to reset to CONV00 and the
conversion result pointer to ADCRESULT0 for SEQ1 after one series of con-
versions. An internal reset event at every other end-of-sequence would cause
the state pointer to reset to CONV00 and the conversion result pointer to AD-
CRESULT0 for SEQ1 after two series of conversions. After the first series of
conversion is completed the state pointer and conversion result pointer are
stored. The next set of conversions for SEQ1 will be started from the stored
state pointer and conversion result pointer. For example, if the module is con-
figured in simultaneous sampling mode with maximum number of conversions
for SEQ1 set to two conversions, after the first series of conversions the state
pointer points to CONV02 and the conversion result pointer to ADCRESULT4.
The next conversion of SEQ1 will convert the channel selected in CONV02
and write the result into ADCRESULT4. At the end of the second series of
conversions the state pointer is reset to CONV00 and the conversion result is
reset to ADCRESULT0.

ADC Trigger and Interrupt Logic

The ADC control register, ADCTRL2, can be used to configure the SOC trig-
ger pulses to start a sequence of conversions. In dual-sequencing mode, the
ePWM_SOCB_SEQ2 bit is used to control the start of sequencing of SEQ2 by
an ePWM_SOCB trigger.

• 0 - SEQ2 cannot be started by ePWM_SOCB trigger
• 1 - SEQ2 can be started by ePWM_SOCB trigger

The ePWM_SOCA_SEQ1 bit is used to control the start of sequencing of SEQ1
by an ePWM_SOCA signal for both dual-sequencing and cascaded-sequencing
modes.

• 0 - SEQ1 cannot be started by ePWM_SOCA trigger
• 1 - SEQ1 can be started by ePWM_SOCA trigger

81

4 TI C2000 Peripheral Models

Additionally, in cascaded-sequencing mode the ePWM_SOCB_SEQ1 bit is used
to control the start of sequencing of SEQ1 by an ePWM_SOCB signal (SEQ2
is unused in cascaded-sequencing mode).

• 0 - SEQ1 cannot be started by ePWM_SOCB trigger
• 1 - SEQ1 can be started by ePWM_SOCB trigger

After every sequence of conversions, the ADC generates an EOS pulse with
the duration of one ADC clock period. The ADCTRL2 register can be used to
configure the interrupts generated at the end of sequence of SEQ1 and SEQ2.
The INT_ENA_SEQ1 and INT_ENA_SEQ2 bits are used to control the gener-
ation of an ADC interrupt signal for SEQ1 and SEQ2, respectively. With the
register below, the interrupt behavior can be configured.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

SOCB
SEQ2

8

INT_MOD
SEQ2

INT_ENA
SEQ2

RST
SEQ2

SOCA
SEQ1

INT_MOD
SEQ1

INT_ENA
SEQ1

SOC
SEQ1

SOCB
SEQ

RST
SEQ1

Reserved Reserved Reserved ReservedSOC
SEQ2

EXT_SOC
SEQ1

ADC Control Register for ADC trigger and interrupt configuration [2]

The INT_ENA_SEQx bit enables the interrupt generation for SEQx.

• 0 - ADC INT_SEQx disabled
• 1 - ADC INT_SEQx enabled

The INT_MOD_SEQx bit configures the generation of an interrupt signal for
SEQx at every EOS or every other EOS.

• 0 - ADC interrupt generated for every EOS of SEQx
• 1 - ADC interrupt generated for every other EOS of SEQx

Summary of PLECS Implementation

The PLECS type 2 ADC module models the major functionality of the actual
TI type 2 ADC module. Below is a summary of differences of the PLECS type
2 ADC module as compared to the actual type 2 ADC module:

• The high and low reference voltages are provided as user inputs on the
block mask. The reference voltages must be non-negative and the high ref-
erence voltage must be greater than the low reference voltage.

• Both MAX_CONV1 and MAX_CONV2 inputs are sampled at trigger events
ePWM_SOCA and ePWM_SOCB.

• Continuous run mode is not supported.
• Sequencer override is not supported.

82

Analog Digital Converter (ADC) Type 2

• Internal sequencer reset at every end-of-sequence or every other end-of-
sequence has been modeled for ease of use. See section “ADC Sequencer
Mode” (on page 79) for more details.

• The output results are provided either as unsigned integers (right justified)
or as quantized double values.

83

4 TI C2000 Peripheral Models

Analog Digital Converter (ADC) Type 3

The PLECS peripheral library provides two blocks for the TI ADC type 3 mod-
ule, one with a register based configuration mask and a second with a graphi-
cal user interface. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• ePWMx_SOCy - input ports to trigger ADC conversions
• ADCINA/B - input ports for measurements
• ADCRESULTx - output ports to access conversion results
• ADCINTx - output ports for subsequent logic triggered by a conversion end

84

Analog Digital Converter (ADC) Type 3

ADC Module Overview

The PLECS ADC model implements the most relevant features of the MCU
peripheral.

Overview of the type 3 ADC module [1]

The ADC model implements these logical submodules:

• ADC Converter with Result Registers
• ADC Reference Voltage Generator
• ADC Sample Generation Logic
• ADC Input Circuit
• ADC Interrupt Logic

85

4 TI C2000 Peripheral Models

ADC Converter with Result Registers

The type 3 ADC module contains a single 12-bit converter. Either an internal
or an external voltage reference can be selected.
The converter takes 13 ADC clocks for a single conversion. The period of the
ADC clock, and therefore the time base for the module, is determined based
on the system clock and the two clock dividers specified in the ADCCTL2 reg-
ister.

CLKDIV2ENADCNONOVERLAP
15 3 2 0

CLKDIV4EN
1

Reserved

ADCCTL2 Register structure

By using the bits CLKDIV4EN and CLKDIV2EN the ADC time base can be
specified as follows.

CLKDIV2EN CLKDIV4EN ADC clock

0 0 SYSCLK

0 1 SYSCLK

1 0 SYSCLK / 2

1 1 SYSCLK / 4

The bit ADCNONOVERLAP determines if an overlap of sampling and conver-
sion is allowed in case of multiple pending conversion requests.
• 0 - Overlap is allowed
• 1 - Overlap is not allowed
Once a conversion has completed, the result is stored to one of the 16 result
registers ADCRESULT0 - ADCRESULT15. These are directly associated with
the SOC. The content of the result registers is available at the output ports of
the model. The representation of the conversion result can be chosen with the
mask parameter Output Mode.

ADC Reference Voltage Generator

The ADC can use an internal or an external reference voltage. The internal
bandgap range is [0V...3.3V], while the external reference can be specified in
the component mask.

86

Analog Digital Converter (ADC) Type 3

7 6 5 4 3 2 1 0

15 14 13 12

TEMPCONVVREFLO CONVADCREFSELReservedADCBGPWD ADCREFPWDADCPWN

ADCBSYCHNADCBSYADCENABLERESET
0

ADCCTL1 Register structure

With the bit ADCREFSEL, the desired voltage reference can be chosen.
• 0 - Internal bandgap
• 1 - Reference voltages defined by module mask
The component only supports the late interrupt pulse mode. Therefore the bit
INTPULSEPOS should be one.

ADC Sample Generation Logic

The ADC Sample Generation Logic responds to the SOCx signals, which are
based on 16 individual sets of configuration parameters SOC0 - SOC15. Every
SOC contains the following information:
• Size of Sampling Window (ACQPS)
• Converted Input Channel (CHSEL)
• Trigger Signal (TRIGSEL)
The register used for configuring a SOC is shown below.

ACQPSCHSELReservedTRIGSEL
15 11 10 9 6 5 0

ADCSOCxCTL Register structure

The register cell ACQPS defines the length of the sampling window. The min-
imum value valid is 06h which sets the Sample Window to 6+1 ADC clock cy-
cles. Note according to the hardware documentation, there are a number of
invalid settings for this register field:

10h , 11h , 12h , 13h , 14h , 1Dh , 1Eh , 1Fh , 20h , 21h , 2Ah , 2Bh , 2Ch

2Dh , 2Eh , 37h , 38h , 39h , 3Ah , 3Bh

The time needed for a full conversion can be calculated with the following
equation.

Tconv = (ACQPS + 1) ·ADCclk︸ ︷︷ ︸
SamplingWindow

+ 13 ·ADC clk︸ ︷︷ ︸
Conversion

87

4 TI C2000 Peripheral Models

The CHSEL field associates an input pin with a specific SOC. The component
allows single and simultaneous sampling – see section “ADC Input Circuit”
(on page 90). For a SOC in single sample mode, cell configuration is as follows.

CHSEL Input

0h ADCINA0

1h ADCINA1

... ...

7h ADCINA7

8h ADCINB0

... ...

Fh ADCINB7

In case of simultaneous sample mode, the channel selection is configured as
pairs.

CHSEL Input pair

0h ADCINA0 / ADCINB0

1h ADCINA1 / ADCINB0

... ...

7h ADCINA7 / ADCINB7

> 7h Invalid Selection

With the TRIGSEL field it is possible to choose a particular trigger source
available as a block input. The PLECS component only supports eP-
WMx_SOCy trigger signals. The following table shows the mapping to the hex-
adecimal representation. Configurations above 14h and below 05h are invalid
and result in an error.

Additionally, it is possible to configure the interrupt signals INT1 and INT2 to
trigger ADC conversions. See section “ADC Interrupt Logic” (on page 91) for
further details.

During operation of an ADC, more than one conversion trigger can occur si-
multaneously. A SOC can also be triggered while a conversion is already ac-

88

Analog Digital Converter (ADC) Type 3

TRIGSEL Input / Source

05h ePWM1_SOCA

06h ePWM1_SOCB

07h ePWM2_SOCA

... ...

14h ePWM8_SOCB

tive. A round robin method prioritizes pending SOCs. This scheme is accu-
rately reflected by the PLECS component. The figure below shows an example
snapshot of the round robin wheel.

ADC Prioritization example [1]

This wheel consist of 16 SOC flags and a round robin pointer (RRPOINTER).
A SOC flag is set when a trigger is received and is cleared when the corre-
sponding conversion finishes. The round robin pointer always points to the
last converted SOC and is changed with the end of every conversion. In the
PLECS ADC model, the round robin pointer initially points to SOC15. In the
example above, the round robin pointer points to SOC7 indicating this is the
last converted SOC. At this point in time, the SOC2 and SOC12 are triggered
and the corresponding flags are set. For prioritization, the ADC starts with
RRPOINTER+1 and goes clockwise through the round robin wheel, meaning
SOC12 is executed next in this example.

89

4 TI C2000 Peripheral Models

The hardware ADC also provides higher prioritized SOCs and a ONESHOT
single conversion mode. These are not supported by the PLECS model.

ADC Input Circuit

The Input Circuit of the type 3 ADC module consists of two separate Sam-
ple&Hold circuits (S&H), each connected to a multiplexer. The field CHSEL
from the ADCSOCxCTL register associates an input with a particular SOC.
Measurements of TEMP SENSOR and VREFLO are not supported by the
PLECS model. The figure below shows the hardware circuit schematic of an
ADCIN voltage connected to an S&H circuit.

ADCInx Input Model [1]

After an SOC is triggered from the round robin wheel, the switch is closed
for the sampling window changing the voltage of the sampling Capacitor Ch .
Once the sampling time has elapsed, the switch is opened and the conversion
starts. For simulation efficiency reasons, the PLECS model of the ADC ap-
proximates this behavior by taking the average of the input values at the be-
gin and end of the sampling window.

The type 3 ADC further provides single as well as simultaneous measure-
ments. For a single measurement, only one S&H circuit is active at a time.
For simultaneous measurements, both S&H circuits operate in parallel, sam-
pling two different voltages at the same time. The conversion is carried out
sequentially starting with the upper S&H voltage. The sampling mode is as-
signed pairwise, always in groups of even and odd SOCs using the register
shown below.

With the bit SIMULENx, the sampling mode can be chosen as follows.

• 0 - Single sample mode for SOCx and SOCx+1
• 1 - Simultaneous sample mode set for SOCx and SOCx+1

90

Analog Digital Converter (ADC) Type 3

7 6 5 4 3 2 1 0

15 8

SIMULEN0SIMULEN2SIMULEN4SIMULEN6SIMULEN8SIMULEN10SIMULEN12SIMULEN14

Reserved

ADCSAMPLEMODE Register structure

In case of simultaneous mode, both SOCs can still be configured indepen-
dently by the ADCSOCxCTL registers. The behavior during conversion (sam-
ple window length and channel selection) is always determined by the trig-
gered SOC. For a more advanced understanding of the modules behavior and
configuration, please refer to [1].

ADC Interrupt Logic

For every conversion, the ADC sample generation logic generates an end of
conversion pulse (EOC) with duration one ADC clock period. This pulse is
generated one cycle before latching the conversion result. The interrupt pulse
always lags the EOC pulse by one ADC clock period and therefore is simul-
taneous to the result latch. The ADC Interrupt Logic can generate the inter-
rupts ADCINT1-ADCINT9, which are available at the output ports of the ADC
model. With the register below, the interrupt behavior can be configured.

7 6 5 4 0

15 14 13 12 8

INT1SEL

INT2SEL

INT1E

INT2EINT2CONT

INT1CONT

Reserved

Reserved

INTSELxNy Register structure for the example of INT1 and INT2

The INTxE bit enables the interrupt generation by an EOC flag.

• 0 - ADCINTx disabled
• 1 - ADCINTx enabled

The INTxSEL cell defines which EOC flag triggers the interrupt.

91

4 TI C2000 Peripheral Models

INTxSEL Interrupt Trigger

00h EOC0 triggers interrupt ADCINTx

01h EOC1 triggers interrupt ADCINTx

... ...

0Fh EOC15 triggers interrupt ADCINTx

> 0Fh Invalid Selection

Note The cells INT10E and INT10SEL in INTSEL9N10 have no effect be-
cause the model only supports the interrupts ADCINT1-ADCINT9.

Additionally, the interrupts INT1 and INT2 can be configured to internally
trigger SOCs, using the the following registers:

SOC0SOC1SOC2SOC3SOC4SOC5SOC6SOC7
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL1 Register structure

SOC8SOC9SOC10SOC11SOC12SOC13SOC14SOC15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL2 Register structure

The field SOCx can be configured as follows.

SOCx Interrupt Trigger

00 No ADCINT will trigger SOCx

01 ADCINT1 will trigger SOCx

10 ADCINT2 will trigger SOCx

11 Invalid Selection

The setting in this register, if not 00, overwrites the trigger setting defined in
the field TRIGSEL of the ADCSOCCTLx register.

92

Analog Digital Converter (ADC) Type 4

Analog Digital Converter (ADC) Type 4

The PLECS peripheral library provides two blocks for the TI ADC type 4 mod-
ule, one with a register based configuration mask and a second with a graphi-
cal user interface. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

93

4 TI C2000 Peripheral Models

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• ePWMx_SOCy/z - input ports to trigger ADC conversions
• ADCINx - input ports for measurements
• ADCPPBxOFFREF - input ports for PPB error calculation
• ADCRESULTx - output ports to access conversion results
• ADCINTx - output ports for subsequent logic triggered by a conversion end
• ADCPPBxRESULT - output ports to access PPB results
• ADCEVTx - output ports for PPB events
• ADCEVTSTAT - access to PPB event status register
• ADCEVTINT - output ports for PPB interrupts
• ADCPPBxSTAMP - output ports to access PPB DLYSTAMP

94

Analog Digital Converter (ADC) Type 4

ADC Module Overview

The PLECS ADC model implements the most relevant features of the MCU
peripheral.

Overview of the type 4 ADC module [4]

The ADC model implements these logical submodules:

• AD Core with Input Circuit and Converter and Result Register
• AD Wrapper with SOC Arbitration & Control and Interrupt Block
• ADC Post-Processing Blocks

ADC Converter and Result Register

The type 4 ADC module contains a single converter with an external voltage
reference specified in the component mask. It supports 12-bit and 16-bit reso-
lution and can be operated in single-ended or differential mode depending on
the settings in the ADCCTL2 register.

95

4 TI C2000 Peripheral Models

7 6 3 0

15 13 12

RESERVED

0

RESERVED RESERVED

45

RESOLUTIONSIGNALMODE PRESCALE

ADCCTL2 Register structure

The bits SIGNALMODE and RESOLUTION determine the behavior and the
resolution used by the ADC. Please note that only the following combinations
are valid:

SIGNALMODE/RESOLUTION 12-bit (0) 16-bit (1)

Single-Ended (0) x

Differential (1) x

The converter takes 29.5 (16-bit) or 10.5 (12-bit) ADC clocks for a single con-
version. The period of the ADC clock is derived from the system clock, spec-
ified in the component mask, and the PRESCALE bit specified in the ADC-
CTL2 register.

PRESCALE ADC Clock

0h ADCCLK = System Clock / 1.0

1h Invalid

2h ADCCLK = System Clock / 2.0

3h ADCCLK = System Clock / 2.5

4h ADCCLK = System Clock / 3.0

... ...

Fh ADCCLK = System Clock / 8.5

Once a conversion has completed, the result is stored to one of the 16 result
registers ADCRESULT0 - ADCRESULT15. These are directly associated with
the SOC. The content of the result registers is available at the output ports of
the model. The representation of the conversion result can be chosen with the
mask parameter Output Mode.

96

Analog Digital Converter (ADC) Type 4

ADC SOC Arbitration & Control

The ADC Arbitration Logic is defined by SOCx configurations, which consist
of 16 individual sets of configuration parameters SOC0 - SOC15. Every SOC
contains the following information:

• Size of Sampling Window (ACQPS)
• Converted Input Channel (CHSEL)
• Trigger Signal (TRIGSEL)

The register used for configuring a SOC is shown below.

015 14 9

ACQPS

181920242531

8

RESERVED

CHSEL

RES.

RESERVED

TRIGSEL CHSEL

ADCSOCxCTL Register structure

The register cell ACQPS defines the length of the sampling window. The sam-
pling window is determined by the system clock and needs to be chosen to last
at least one ADC clock period.

The time needed for a full single ended conversion can be calculated as fol-
lows.

Tconv_single−ended = (ACQPS + 1) · SYSclk︸ ︷︷ ︸
SamplingWindow

+ 10.5 ·ADC clk︸ ︷︷ ︸
Conversion

For a differential conversion, the time needed is determined by

Tconv_differential = (ACQPS + 1) · SYSclk︸ ︷︷ ︸
SamplingWindow

+ 29.5 ·ADC clk︸ ︷︷ ︸
Conversion

97

4 TI C2000 Peripheral Models

The CHSEL field associates an input (single-ended mode) or a pair of inputs
(differential mode) with a specific SOC. For more details, see section “ADC In-
put Circuit” (on page 100). In single-ended mode, the input configuration for a
SOC is as follows.

CHSEL Input

0h ADCIN0

1h ADCIN1

... ...

Fh ADCIN15

In case of differential mode, the channel selection is configured as pairs.

CHSEL Input pair

0h ADCIN0 / ADCIN1

1h ADCIN0 / ADCIN1

2h ADCIN2 / ADCIN3

3h ADCIN2 / ADCIN3

... ...

Eh ADCIN14 / ADCIN15

Fh ADCIN14 / ADCIN15

With the TRIGSEL field it is possible to choose a particular trigger source
available as a block input. The ADC model only supports ePWMx_SOCy/z
trigger signals. The following table shows the mapping to the hexadecimal
representation. Configurations above 1Ch and below 05h are invalid and result
in an error.

98

Analog Digital Converter (ADC) Type 4

TRIGSEL Input / Source

05h ePWM1_SOCA/C

06h ePWM1_SOCB/D

07h ePWM2_SOCA/C

08h ePWM2_SOCB/D

... ...

1Bh ePWM8_SOCA/C

1Ch ePWM8_SOCB/D

Additionally, it is possible to configure the interrupt signals INT1 and INT2 to
trigger ADC conversions. See section “ADC Interrupt Logic” (on page 101) for
further details.

During operation of an ADC, more than one conversion trigger can occur si-
multaneously. A SOC can also be triggered while a conversion is already ac-
tive. A round robin method prioritizes pending SOCs. This scheme is accu-
rately reflected by the PLECS component. The figure below shows an example
snapshot of the round robin wheel.

ADC Prioritization example [4]

This wheel consist of 16 SOC flags and a round robin pointer (RRPOINTER).
A SOC flag is set when a trigger is received and is cleared when the corre-

99

4 TI C2000 Peripheral Models

sponding conversion finishes. The round robin pointer always points to the
last converted SOC and is changed with the end of every conversion. In the
PLECS ADC model, the round robin pointer initially points to SOC15. In the
example above, the round robin pointer points to SOC7 indicating this is the
last converted SOC. At this point in time, the SOC2 and SOC12 are triggered
and the corresponding flags are set. For prioritization, the ADC starts with
RRPOINTER+1 and goes clockwise through the round robin wheel, meaning
SOC12 is executed next in this example.

The hardware ADC also provides higher prioritized SOCs, software triggering
and a burst mode. These are not supported by the PLECS model.

ADC Input Circuit

The Input Circuit of the type 4 ADC module consists of a single Sample&Hold
circuit (S&H) connected to a multiplexer.

In single-ended mode, a single input is connected to the S&H circuit as shown
below.

ADCInx Input Model in Single-Ended Mode [4]

In this mode, a single input voltage is converted with 12bit resolution. The
ADC operates in range [VREFLO ... VREFHI]. The reference voltage can be
specified in the component mask.

100

Analog Digital Converter (ADC) Type 4

In differential mode, the difference between two voltages can be measured
with 16-bit resolution.

ADCInx Input Model in Differential Mode [4]

In this mode, the ADC operates in range [-VREFHI ... VREFHI].

The field CHSEL from the ADCSOCxCTL register associates an input or a
pair of inputs with a particular SOC.

After an SOC is triggered from the round robin wheel, the switch is closed
for the sampling window changing the voltage of the sampling Capacitor Ch .
Once the sampling time has elapsed, the switch is opened and the conversion
starts. For simulation efficiency reasons, the PLECS model of the ADC ap-
proximates this behavior by taking the average of the input values at the be-
gin and end of the sampling window.

The behavior during conversion (sample window length and channel selection)
is always determined by the triggered SOC. For a more advanced understand-
ing of the modules behavior and configuration, please refer to [4].

ADC Interrupt Logic

For every conversion, the SOC Arbiter logic generates an end of conversion
pulse (EOC). This pulse results in an interrupt pulse with duration of one sys-
tem clock. The component only supports the late interrupt pulse mode. There-
fore the bit INTPULSEPOS in the ADCCTL1 register needs to be set to one.

7 6 3 2 1 0

15 14 13 12

RESERVEDADCPWNDZ

ADCBSYCHNADCBSY
0

RESERVED RESERVED
11

RESERVED

ADCCTL1Register structure

101

4 TI C2000 Peripheral Models

Based on this, the interrupt pulses always occur synchronous to latching the
conversion results to the output.

The ADC Interrupt Logic can generate the interrupts ADCINT1-ADCINT4,
which are available at the output ports of the ADC model. With the register
below, the interrupt behavior for INT1 and INT2 can be configured.

7 6 5 4 0

15 14 13 12 8

INT1SEL

INT2SEL

INT1E

INT2EINT2CONT

INT1CONT

RESERVED

RESERVED

11

3

RESERVED

RESERVED

ADCINTSELxNy Register structure for the example of INT1 and INT2

In the model, the Interrupt Logic can only be operated in Continuous Mode.
Therefore, the bit INTxCONT always needs to be set.

The INTxE bit enables the interrupt generation by an EOC flag.

• 0 - ADCINTx disabled
• 1 - ADCINTx enabled

The INTxSEL cell defines which EOC flag triggers the interrupt.

INTxSEL Interrupt Trigger

0h EOC0 triggers interrupt ADCINTx

1h EOC1 triggers interrupt ADCINTx

... ...

Fh EOC15 triggers interrupt ADCINTx

Additionally, the interrupts INT1 and INT2 can be configured to internally
trigger SOCs, using the the following registers:

SOC0SOC1SOC2SOC3SOC4SOC5SOC6SOC7
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL1 Register structure

SOC8SOC9SOC10SOC11SOC12SOC13SOC14SOC15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL2 Register structure

102

Analog Digital Converter (ADC) Type 4

SOCx Interrupt Trigger

00 No ADCINT will trigger SOCx

01 ADCINT1 will trigger SOCx

10 ADCINT2 will trigger SOCx

11 Invalid Selection

The setting in this register, if not 00, overwrites the trigger setting defined in
the field TRIGSEL of the ADCSOCCTLx register.

Post-Processing Blocks

The type 4 ADC module contains four PPB blocks to post-process the conver-
sion results. The figure below shows the block diagram of a single submodule.

Overview of the type 4 ADC PPB submodule [4]

103

4 TI C2000 Peripheral Models

The PPB blocks add the following features to the ADC.

• PPB Offset Correction
• PPB Error Calculation
• PPB Limit and Zero-Crossing Detection
• PPB Sample Delay Capture

Each PPB block is associated to a single SOC. This can be configured with the
register ADCPPBxCONFIG shown below.

7 3 0

15

RESERVED

8

RESERVED

45

CONFIGTWOSCOMPEN

ADCPPBxCONFIG Register structure

The field CONFIG determines the associated SOC.

CONFIG SOC

0h SOC0

1h SOC1

... ...

Fh SOC15

Note that multiple PPB blocks can point to a single SOC. The default used is
SOC0.

The PPB block implements an offset correction for the conversion result of the
associated SOC. The result of this calculation is presented at the ADCRE-
SULTx output. The calculation further saturates at 0 at the low end and ei-
ther 4095 or 65535 at the high end, depending on the signal mode (single-
ended or differential). The offset can either be positive or negative and is de-
fined by the ADCPPBxOFFCAL register shown below.

7 0

15 8

RESERVED

OFFCAL

10 9

OFFCAL

ADCPPBxOFFCAL Register structure

104

Analog Digital Converter (ADC) Type 4

The field OFFCAL defines the offset used.

OFFCAL OFFSET

0h -1

1h -2

... ...

1FFh -512

200h +512

... ...

3FEh +2

3FFh +1

Note If multiple PPB’s are associated to an SOC, the ADCPPBxOFFCAL reg-
ister of the PPB with the highest ID is used for the calculation.

In addition to the offset calculation, the PPB implements an error calculation
depending on the field TWOSCOMPEN in the PPBxCONFIG register and the
ADCPPBxOFFREF input.

• 0 - ADCPPBxRESULT = ADCRESULTx - ADCPPxOFFREF
• 0 - ADCPPBxRESULT = ADCPPxOFFREF - ADCRESULTx

The result of this calculation produces a sign extended integer result and is
available at the ADCPPBxRESULT output.

The PPB block further implements a Zero-Crossing- and Limit-Detection for
the PPB results. The Limits compared to the ADCPPBxRESULT registers are
specified with the trip registers shown below.

015

LIMITHI

31

RESERVED
17

HSIGN
16

ADCPPBxTRIPHI Register structure for differential mode (16-bit)

105

4 TI C2000 Peripheral Models

015

LIMITLO

31

RESERVED
17

LSIGN
16

ADCPPBxTRIPLO Register structure for differential mode (16-bit)

015

LIMITHI

31

RESERVED
17

HSIGN
16

1213

LIMITHI

ADCPPBxTRIPHI Register structure for single-ended mode (12-bit)

015

LIMITLO

31

RESERVED
17

LSIGN
16

1213

LIMITLO

ADCPPBxTRIPLO Register structure for single-ended mode (12-bit)

Please note that the bits used within those registers depend on the signal
mode. For the registers ADCPPBxRESULT, ADCPPBxTRIPLO and ADCPP-
BxTRIPHI, the bit usage is indicated below.

SIGNALMODE Sign bit Data bits

0 - single-ended 12 [11:0]

1 - differential 16 [15:0]

The information from the Zero-Crossing- and Limit-Detection is stored within
the ADCEVTSTAT register.

7 6 5 4 0

15 14 13 12 8

RESERVED

RESERVED

11

3

RESERVEDPPB4TRIPHI

RESERVED
01

910

2

PPB4TRIPLOPPB4ZERO PPB3ZERO PPB3TRIPLO PPB3TRIPHI

PPB2ZERO PPB1ZEROPPB2TRIPLO PPB1TRIPLO PPB1TRIPHIPPB2TRIPHI

ADCEVTSTAT Register structure

This register is shared by all PPB blocks and is available at the model out-
put. The status can further be used to generate ADC-Events and/or ADC-
Interrupts. The state changes resulting in events and interrupts are config-
ured using the ADCEVTSEL and ADCINTEVTSEL registers in the mask.

106

Analog Digital Converter (ADC) Type 4

7 6 5 4 0

15 14 13 12 8

RESERVED

RESERVED

11

3

RESERVEDPPB4TRIPHI

RESERVED
01

910

2

PPB4TRIPLOPPB4ZERO PPB3ZERO PPB3TRIPLO PPB3TRIPHI

PPB2ZERO PPB1ZEROPPB2TRIPLO PPB1TRIPLO PPB1TRIPHIPPB2TRIPHI

ADCEVTSEL Register structure

7 6 5 4 0

15 14 13 12 8

RESERVED

RESERVED

11

3

RESERVEDPPB4TRIPHI

RESERVED
01

910

2

PPB4TRIPLOPPB4ZERO PPB3ZERO PPB3TRIPLO PPB3TRIPHI

PPB2ZERO PPB1ZEROPPB2TRIPLO PPB1TRIPLO PPB1TRIPHIPPB2TRIPHI

ADCINTEVTSEL Register structure

While every PPB hast its own ADCEVTx output, all PPBs share one interrupt
flag available at the ADCEVTINT output.

Each PPB further provides a functionality to capture the delay between a trig-
ger to the associated SOC and the effective start of the conversion. This infor-
mation is provided as multiples of the used system clock period and stored in
the ADCPPBxSTAMP register.

7 0

15 8

RESERVED

DLYSTAMP

12 11

DLYSTAMP

ADCPPBxSTAMP Register structure

Note The DLYSTAMP is calculated based on a 12-bit counter and wraps
around at 4095.

107

4 TI C2000 Peripheral Models

Enhanced Capture (eCAP) Type 0

The PLECS peripheral library provides two blocks for the TI eCAP Type 0
module operated in capture mode: one with a register based configuration
mask and a second with a graphical user interface (GUI). The peripheral li-
brary also includes a block for the TI eCAP Type 0 module operated in APWM
mode. The figure below shows the GUI-based version of the PLECS Type 0
eCAP module operated in capture mode and the PLECS Type 0 eCAP module
operated in APWM mode.

PLECS eCAP modules operated in APWM and Capture modes

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

The PLECS eCAP models implement the most relevant features of the MCU
peripheral.

108

Enhanced Capture (eCAP) Type 0

eCAP Module Operated in Capture Mode

When operated in capture mode, the eCAP module interfaces with other
PLECS components over the following terminal groups:
• ECAPx_pin - input ports to capture the pulse train
• CAPx - output ports to access capture registers 1-4
• Interrupt - output port for eCAP interrupt trigger

Overview of the type 0 eCAP module in capture mode [3]

The eCAP model operated in capture mode implements the following fea-
tures:
• Event Prescaler
• Edge Polarity Select and Capture Control

Event Prescaler

The event prescaler bits ECCTL1[13:9] can be used to reduce the frequency
of the input capture signal. When a prescale value of 1 is chosen (i.e., EC-
CTL1[13:9] = 0,0,0,0,0) the input capture signal bypasses the prescale logic

109

4 TI C2000 Peripheral Models

completely. Alternatively, the prescaler can be scaled by a factor of 2 to 62 us-
ing the ECCTL1[13:9] bits. This is useful when very high frequency signals
are used as inputs.

Event prescaler control [3]

Edge Polarity Select and Capture Control

Independent edge polarities can be selected for each of the 32-bit CAP1-4 reg-
isters to capture the counter value. Loading of the capture registers can be
disabled by clearing the CAPLDEN bits in the ECCTL1 register. The bits
CAPxPOL in the ECCTL1 are used to configure the CAPx capture event on
a rising or falling edge.

The PLECS eCAP module can only be operated in continuous capture con-
trol mode. A 2-bit counter continues to run (0->1->2->3->0) and capture
values continue to be written to CAP1-4 in a circular buffer sequence. The
CTRRST1-4 bits in the ECCTL1 register can be used to force the counter to
reset after a capture event. This is useful when the eCAP module is operated
in difference mode.

The STOP_WRAP bits in the ECCTL2 register can be used to program the 2-
bit counter wrapping to occur after any of the four capture events.

Note The PLECS eCAP module does not support One-Shot capture control
mode.

110

Enhanced Capture (eCAP) Type 0

eCAP Module Operated in APWM Mode

When operated in APWM mode, the eCAP module interfaces with other
PLECS components over the following terminal groups:

• CAP3 - input port for period shadow register
• CAP4 - input port for compare shadow register
• APWM Output - output port for the APWM gating signal
• Interrupt - output port for eCAP interrupt trigger

PWM waveform details of eCAP module operated in APWM mode [3]

The PLECS APWM mode supports shadow mode operation only. The CAP3-
4 register values are transferred to their active register on a period event.
The CAP3 input corresponds to writing to the period shadow register and the
CAP4 input corresponds to writing to the compare shadow register.

Note Immediate update operation in APWM mode is not supported.

eCAP Interrupts

In capture mode, the eCAP module can be configured to generate an interrupt
at any of the 4 capture events using the CEVTx bits in the ECEINT register.

In APWM mode, the eCAP module can be configured to generate an interrupt
at counter equals period and counter equals compare events. This can be done
by setting the CTR=PRD and CTR=CMP bits in the ECEINT register, respec-
tively.

111

4 TI C2000 Peripheral Models

In both modes, a counter overflow event (FFFFFFFF->00000000) can be
configured to produce an interrupt by configuring the CTROVF bit in the
ECEINT register.

Note Flags used to generate the interrupt signal are automatically cleared in
the PLECS eCAP module after one system clock period for ease of use.

eCAP Counter Update

The PLECS eCAP module provides users access to the 32-bit counter as a
probe signal. To improve simulation efficiency the counter value is not sam-
pled every system clock period. Instead, the user defines a counter sampling
frequency to sample the counter value at the desired frequency.

Note Higher counter sampling frequency increases counter resolution but
reduces simulation speed.

Summary of PLECS Implementation

The PLECS eCAP module models the major functionality of the actual TI type
0 eCAP module. Below is a summary of the differences between the PLECS
Type 0 eCAP module and the actual Type 0 eCAP module:

• No delay between capture event and capture value becoming valid.
• One-Shot capture control mode is not supported.
• Immediate update operation in APWM mode is not supported.
• Flags used to generate the interrupt signal are automatically cleared.
• Counter sampling frequency provides user control of the counter resolution.

A higher resolution leads to slower simulation speed.

112

Enhanced Capture (eCAP) Type 0

Reference
1 - Pictures provided with Courtesy of Texas Instruments, Literature source:

TMS320x2806x Piccolo Technical Reference Manual, Literature Number
SPRUH18D, January 2011-February 2013

2 - Pictures provided with Courtesy of Texas Instruments, Literature source:
TMS320x2833x Analog-to-Digital Converter (ADC) Module Reference
Guide, Literature Number SPRU812A, September 2007 - Revised Octo-
ber 2007

3 - Pictures provided with Courtesy of Texas Instruments, Literature source:
TMS320x2833x, 2823x Enhanced Capture (eCAP) Module Reference
Guide, Literature Number: SPRUFG4A, August 2008 - Revised June
2009

4 - Pictures provided with Courtesy of Texas Instruments, Literature source:
TMS320x2837xD, 2827xD Analog-to-Digital Converter (ADC) Module Ref-
erence Guide, Literature Number: SPRUHM8C, December 2013 - Revised
December 2014

113

4 TI C2000 Peripheral Models

114

5

Embedded Application

This chapter provides additional information about the C2000 FOC demo ap-
plication.

Importing the CCS Demo Project

The source code of the embedded demonstration project is provided as part of
the PIL Framework installation and can be directly imported into CCSv5.5 by
the Import Existing CCS Eclipse Project item from the Project Menu.

Configuring the Project

The building of the demo project is configured to include custom pre-build and
post-build actions.

At the start of a build, the PIL Prep Tool is called to generate the auxiliary
symbols used by PLECS, as explained in “PIL Prep Tool” (on page 24). At the
completion of the build C2Prog is called to generate an extended-hex (*.ehx)
file for reflashing the MCU using C2Prog.

5 Embedded Application

Custom build steps

These additional build steps are configured in the Build section of the
project properties (Steps tab). Both build steps call the batch file named
buildsteps.bat.

If you have installed C2Prog in a non-default location, you will have to open
the buildsteps.bat file with a text editor and adjust the C2PROG_PATH setting to
match the installation on your machine.

Rebuilding the Project

The project can be compiled and flashed by clicking the “bug” symbol on the
toolbar or selecting Debug from the Project menu.

After reflashing the C2000 MCU with your own project, ensure the PLECS
target manager is pointing to the correct symbol file (located in the Debug
folder).

116

Project Structure

Project Structure

The following is a brief description of the files making up the embedded demo
application.

Device Support

Standard files from TI’s ControlSUITE are used for basic device support. The
associated header files are located in the include folder. Device support C and
assembly files are located at the root of the project.

• DevInit.c

• CodeStartBranch.asm

• GlobalVariableDefs.c

• usDelay.asm

Linker Files

The principal linker command file F28xx.cmd is configured to link the program
data to Flash memory, and also defines a special MEMORY range and SECTION
for the probe definitions.

MEMORY
{
PAGE 0 :
...

PAGE 1:
...

PAGE 2 :
VAR_INFO : origin = 0x000000, length = 0x1000

}

SECTIONS
{
...

/* Link PIL probe definitions to virtual memory */
.csconf: load = VAR_INFO, PAGE = 2,

TYPE = COPY {pil_symbols_p.obj (.econst) }

}

117

5 Embedded Application

Notice how a virtual page “2” is used to store the probe symbol information.
This makes the symbol information available to PLECS without consuming
any Flash space on the MCU.

Since this is not a SYS/BIOS application, the F28xx_Headers_nonBIOS.cmd file
must be used in conjunction with F28xx.cmd.

Initialization and Task Dispatching

The following files contain the routines for initialization of the core, timer
setup, hardware interrupts, software interrupts and tasks.

• main.c/h – main() routine, hardware and software interrupt routines.
• io.c/h – Initialization of inputs and outputs.

118

Project Structure

Control Law

The FOC control algorithms include the following functionality:

1 Measurement of phase currents and transformation into dq-frame.

2 Synchronous frame current control with decoupling, output saturation and
anti-windup.

3 Space-vector modulation with voltage compensation.

Note the code also includes an inert ControlTask2() and
ControlBackground(), primarily serving to illustrate multi-threading
concepts and synchronization of multiple threads at the onset of a PIL sim-
ulation, according to “Task Synchronization at Start of Simulation” (on page
41).

The files related to the control algorithms are:

• calib.c/h – Control calibrations (settings).
• pu.c/h – Fixed-point reference values.
• macros.h – Macros for fixed-point calculations.
• control.c/h – Control tasks.
• plx_control_fpu(32).lib – Fixed-point control library.

In addition, the modules folder contains the header files for the fixed-point
control library.

Communication Interface

The demo project utilizes the serial communication interface (SCI) for ex-
changing information with PLECS.

• sci.c/h – SCI communication driver configured for GPIO28/29. Includes the
communication callback function.

PIL Functionality

These files enable the demo application for PIL simulation with PLECS.

• pil.h – PIL framework API.
• pil_comm.c/h – Communication callback function. See “Communication

Callbacks” (on page 31).

119

5 Embedded Application

• pil_ctrl.c/h – Control callback for stepping the control tasks during a PIL
simulation. See “Control Callback” (on page 36).

• pil_symbols_c.inc/c – Defines PIL constants according to “Configuration
Constants” (on page 42).

• pil_symbols_p.inc/c – Definitions of override and read probe attributes.
See “Probes” (on page 24).

• pil_c28.lib – PIL framework library.

Note The files pil_symbols_p.inc and pil_symbols_c.inc are generated by
the PIL Prep Tool and should therefore not be edited or revision controlled.

120

electrical engineering software

Plexim GmbH  info@plexim.com  www.plexim.com

User Manual Version 3.4

The simulation platform for
power electronic systems

PLECS

 U
ser M

anual Version 3.4

	Contents
	Software Requirements

	Getting Started
	Configuring the Hardware
	28069 controlSTICK
	28335 controlCARD
	Docking Station

	Loading the Firmware
	Configuring the PLECS Model
	PIL Target
	Testing the Communication
	PIL Block

	Running the PLECS Model

	Processor-in-the-Loop
	Motivation
	How PIL Works
	PIL Modes
	Configuring PLECS for PIL
	Target Manager
	Communication Links

	PIL Block

	PIL Framework
	Overview
	PIL Prep Tool
	Probes
	Read Probes
	Override Probes

	Calibrations
	Code Identity
	Remote Agent
	Communication Callbacks
	Serial Communication
	Parallel Communication

	Framework Integration and Execution
	Principal Framework Calls
	Control Callback
	Target Mode Switching
	Simulation Start and Termination
	Control Dispatching
	Task Synchronization at Start of Simulation

	Framework Configuration
	Configuration Constants
	Initialization Constants

	TI C2000 Peripheral Models
	Introduction
	Enhanced Pulse Width Modulator (ePWM) Type 1
	Supported Submodules and Functionalities
	Time-Base (TB) Submodule
	Counter-Compare (CC) Submodule
	Action-Qualifier (AQ) Submodule
	Event-Trigger (ET) Submodule
	Dead-Band Submodule

	Enhanced Pulse Width Modulator (ePWM) Type 4
	Supported Submodules and Functionalities
	Time-Base (TB) Submodule
	Counter-Compare (CC) Submodule
	Action-Qualifier (AQ) Submodule
	Event-Trigger (ET) Submodule
	Dead-Band Submodule

	Analog Digital Converter (ADC) Type 2
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Sampling Mode
	ADC Sequencer Mode
	ADC Trigger and Interrupt Logic
	Summary of PLECS Implementation

	Analog Digital Converter (ADC) Type 3
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Reference Voltage Generator
	ADC Sample Generation Logic
	ADC Input Circuit
	ADC Interrupt Logic

	Analog Digital Converter (ADC) Type 4
	ADC Module Overview
	ADC Converter and Result Register
	ADC SOC Arbitration & Control
	ADC Input Circuit
	ADC Interrupt Logic
	Post-Processing Blocks

	Enhanced Capture (eCAP) Type 0
	eCAP Module Operated in Capture Mode
	Event Prescaler
	Edge Polarity Select and Capture Control
	eCAP Module Operated in APWM Mode
	eCAP Interrupts
	eCAP Counter Update
	Summary of PLECS Implementation

	Embedded Application
	Importing the CCS Demo Project
	Configuring the Project
	Rebuilding the Project
	Project Structure
	Device Support
	Linker Files
	Initialization and Task Dispatching
	Control Law
	Communication Interface
	PIL Functionality

