
electrical engineering software

Plexim GmbH  info@plexim.com  www.plexim.com
PLECS

 U

ser M
anual Version 3.4

THE SIMULATION PLATFORM FOR

POWER ELECTRONIC SYSTEMS

PIL-FOC Demo for dspic33F MCUs Version 1.0

How to Contact Plexim:

+41 44 533 51 00 Phone%
+41 44 533 51 01 Fax

Plexim GmbH Mail)
Technoparkstrasse 1
8005 Zurich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

PIL-FOC Demo for dspic33F MCUs

© 2015 by Plexim GmbH

The software PLECS described in this manual is furnished under a license
agreement. The software may be used or copied only under the terms of the
license agreement. No part of this manual may be photocopied or reproduced
in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their re-
spective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii

Software Requirements . 1

1 Getting Started 3

Configuring the Hardware . 4

Loading the Firmware . 4

Configuring the PLECS Model . 5

PIL Target . 6

Testing the Communication . 6

PIL Block . 7

Running the PLECS Model . 9

2 Processor-in-the-Loop 13

Motivation . 13

How PIL Works . 14

PIL Modes . 16

Configuring PLECS for PIL . 17

Target Manager . 17

Communication Links . 18

PIL Block . 20

Contents

3 PIL Framework 25
Overview . 25

PIL Prep Tool . 26

Probes . 26

Read Probes . 26

Override Probes . 28

Calibrations . 31

Code Identity . 31

Remote Agent . 32

Communication Callbacks . 33

Serial Communication . 33

Parallel Communication . 33

Framework Integration and Execution 34

Principal Framework Calls . 34

Control Callback . 38

Target Mode Switching . 39

Simulation Start and Termination 40

Control Dispatching . 41

Task Synchronization at Start of Simulation 43

Framework Configuration . 43

Configuration Constants . 44

Initialization Constants . 45

4 Microchip dsPIC33F Peripheral Models 47
Introduction . 47

Microchip Motor Control PWM . 49

MCPWM Module Overview . 50

PWM Clock Control . 51

PWM Output Control and Resolution 53

Special Event Trigger . 54

Interrupt Control . 55

iv

Contents

Dead Time Generator . 56

Summary of PLECS Implementation 57

Microchip Motor Control ADC . 58

MCADC Module Overview . 59

ADC Configuration . 60

ADC Sampling and Conversion . 62

Multi-channel ADC Sampling Mode 63

ADC Input Selection Mode . 65

ADC Interrupt Logic . 67

ADC Buffer Fill Mode . 68

Summary of PLECS Implementation 68

5 Embedded Application 71
Importing the MPLAB X Demo Project 71

Configuring the Project . 71

Rebuilding the Project . 72

Project Structure . 72

Initialization and Task Dispatching 72

Control Law . 73

Communication Interface . 73

PIL Functionality . 74

v

Contents

vi

Before You Begin

This document contains instructions on how to test and evaluate the PLECS
Processor-In-the-Loop (PIL) functionality in the context of a field-oriented mo-
tor control application.

Software Requirements

The demonstration is designed to be executed on a Windows machine (32-bit
or 64-bit) with the following software installed:

• PLECS Standalone or Blockset (version 3.7 or higher)
• MPLAB®X – Download from microchip.com.

A license is required to run PLECS and activate the PIL package. You can
request such a license from Plexim at plexim.com. Copy the license file
license.dat that will be supplied to you into the directory in which you have
installed PLECS.

http://microchip.com
http://plexim.com

Before You Begin

2

1

Getting Started

This chapter provides a hands-on demonstration of how control-code executing
on a dsPIC33FJ128MC802 device can be tied into a PLECS simulation. More
details about the Processor-in-the-Loop (PIL) concept and how embedded ap-
plications can be enabled for PIL is provided in the subsequent chapters.

The project is based on a basic Field Oriented Control (FOC) application, with
the embedded code controlling the switches of a three-phase inverter powering
a permanent magnet (PM) machine.

FOC demo model

The sample code is designed to execute on a Microstick-II evaluation board in

1 Getting Started

conjunction with a Microstick Plus peripheral panel.

Configuring the Hardware

The slide-switch on the Microstick-II must be in the "A" position.

Loading the Firmware

Connect the PC with the evaluation system by means of two USB cables.
First, make the connection to the Microstick-II board, then connect the Mi-
crostick Plus peripheral panel.

Open the Windows Device Manager and confirm the enumeration of a COM
port.

You may have to install the MPC2200 drivers if the port is not enumerated.

COM port listed in device manager

The pre-compiled executable j128mc.production.hex/elf will be used to get
us started. In MPLABX IPE (Integrated Programming Environment), select

4

Configuring the PLECS Model

the dsPIC33FJ128MC802 device and j128mc.production.hex firmware image.
Then click Connect and Program.

Figure 1.1: Flashing the dsPIC

Once the reflashing completes, confirm that the red LED (D6) on the
Microstick-II is blinking.

Configuring the PLECS Model

Start PLECS.

5

1 Getting Started

PIL Target

We now configure a PIL Target by means of the Target Manager. Open the
target manager using the Window menu item Target Manager.

Target configuration

Click the + button and provide a name for the target. Next, select the Symbol
file associated with the target by clicking the . . . button. The symbol file cor-
responds to the binary produced by the MPLAB codegen tools. Select the file
j128mc.production.elf.

The remaining target configuration is the communication link. Select Serial
from the Device type combo box. Then click on Scan and select the commu-
nication port that is being detected.

Testing the Communication

The target configuration can easily be verified by clicking the Properties but-
ton. This establishes communication with the target and displays diagnostics
information in a new dialog window, as shown below.

6

Configuring the PLECS Model

Target properties

Confirm that the symbol file matches the firmware on the target. The Target
mode should be Ready for PIL.

PIL Block

Now open the model named FOC_pil and double-click on the PIL block. Select
the target that you defined in the target manager from the Target combo box.

Notice how the PIL block has been configured for an external trigger input.
This allows the execution of the PIL block and associated embedded control
code to be triggered by the ADC interrupt (ADCIF) event. The ADC, in turn,
is triggered by an ePWM start-of-conversion (SOC) event in this example.

Activate the Inputs tab and see how the PIL block has been configured for
the following three (3) inputs.

• ControlVars.IdSet,IqSet – Direct and quadrature current set-points (to be
controlled by PI).

• AdcOvrProbes.ADCRESULT0,1,2 – ADC conversion results (two currents and
one voltage).

• ControlVars.fluxPosition, ControlVars.we – Position and speed of rotor.

The names of the signals listed above correspond to the variable names in the
embedded code. As explained in subsequent chapters, a variable must be con-
figured as an Override Probe to be used as a PIL block input. Notice how mul-
tiple Override Probes can be multiplexed into one input.

7

1 Getting Started

PIL block general configuration

The PIL block has been further configured for two (2) output (Outputs tab):

• ControlVars.PDC1,2,3 – PWM peripheral duty cycle register values.
• ControlVars.PSECMP – PWM special event compare register value.

Again, the signal names correspond to the variable names in the embedded
code. Variables must be configured as a Read Probe (or Override Probe) to be
used as PIL block outputs. Notice how three Read Probes have been multi-
plexed into the same output.

Also accessible through the PIL block are the embedded code Calibrations.
This tabs permits modifying and tuning settings in the embedded code, such
as filter coefficients and regulator gains. Shown in the image below is an ex-
ample in which the Calib.KpQ Calibration is modified from its default value.

8

Running the PLECS Model

PIL block inputs

PIL block outputs

Running the PLECS Model

We can now run the simulation by pressing Ctrl-T or selecting Start from the
Simulation menu.

9

1 Getting Started

PIL block calibrations

Observe how the embedded control algorithm is maintaining tight current
regulation as the motor accelerates and the DC input voltage makes a step
change.

10

Running the PLECS Model

PIL simulation result

11

1 Getting Started

12

2

Processor-in-the-Loop

As a separately licensed feature, PLECS offers support for Processor-in-the-
Loop (PIL) simulations, allowing the execution of control code on external
hardware tied into the virtual world of a PLECS model.

At the PLECS level, the PIL functionality consists of a specialized PIL block
that can be found in the Processor-in-the-loop library, as well as the Target
Manager, accessible from the Window menu. Also included with the PIL
library are high-fidelity peripheral models of MCUs used for the control of
power conversion systems.

On the embedded side, a PIL Framework library is provided to facilitate the
integration of PIL functionality into your project.

Motivation

When developing embedded control algorithms, it is quite common to be test-
ing such code, or portions thereof, by executing it inside a circuit simulator.
Using PLECS, this can be easily achieved by means of a C-Script or DLL
block. This approach is referred to as Software-in-the-loop (SIL). A SIL sim-
ulation compiles the embedded source code for the native environment of the
simulation tool (e.g. Win64) and executes the algorithms within the simulation
environment.

The PIL approach, on the other hand, executes the control algorithms on the
real embedded hardware. Instead of reading the actual sensors of the power
converter, values calculated by the simulation tool are used as inputs to the
embedded algorithm. Similarly, outputs of the control algorithms executing
on the processor are fed back into the simulation to drive the virtual environ-
ment. Note that SIL and PIL testing are also relevant when the embedded
code is automatically generated from the simulation model.

2 Processor-in-the-Loop

One of the major advantages of PIL over SIL is that during PIL testing, ac-
tual compiled code is executed on the real MCU. This allows the detection of
platform-specific software defects such as overflow conditions and casting er-
rors. Furthermore, while PIL testing does not execute the control algorithms
in true real-time, the control tasks do execute at the normal rate between two
simulation steps. Therefore, PIL simulation can be used to detect and ana-
lyze potential problems related to the multi-threaded execution of control algo-
rithms, including jitter and resource corruption. PIL testing can also provide
useful metrics about processor utilization.

How PIL Works

At the most basic level, a PIL simulation can be summarized as follows:

Principle of a PIL simulation

• Input variables on the target, such as current and voltage measurements,
are overridden with values provided by the PLECS simulation.

• The control algorithms are executed for one control period.
• Output variables on the target, such as PWM peripheral register values,

are read and fed back into the simulation.

14

How PIL Works

We refer to variables on the target which are overridden by PLECS as Over-
ride Probes. Variables read by PLECS are called Read Probes.

While Override Probes are set and Read Probes are read the dispatching of
the embedded control algorithms must be stopped. The controls must remain
halted while PLECS is updating the simulated model. In other words, the con-
trol algorithm operates in a stepped mode during a PIL simulation. However,
as mentioned above, when the control algorithms are executing, their behavior
is identical to a true real-time operation. We therefore call this mode of opera-
tion pseudo real-time.

Let us further examine the pseudo real-time operation in the context of an
embedded application utilizing nested control loops where fast high-priority
tasks (such as current control) interrupt slower lower-priority tasks (such as
voltage control). An example of such a configuration with two control tasks is
illustrated in the figure below. With every hardware interrupt (bold vertical
bar), the lower priority task is interrupted and the main interrupt service rou-
tine is executed. In addition, the lower priority task is periodically triggered
using a software interrupt. Once both control tasks have completed, the sys-
tem continues with the background task where lowest priority operations are
processed. The timing in this figure corresponds to true real-time operation.

Control Task 1

Control Task 2

Background Task

1 2 3 4 5 6

Nested Control Tasks

The next figure illustrates the timing of the same controller during a PIL sim-
ulation, with the stop and go symbols indicating when the dispatching of the
control tasks is halted and resumed.

After the hardware interrupt is received, the system stops the control dis-
patching and enters a communication loop where the values of the Override
Probes and Read Probes can be exchanged with the PLECS model. Once a
new step request is received from the simulation, the task dispatching is

15

2 Processor-in-the-Loop

Control Task 1

Control Task 2

Background Task

2 3

STOP

1

STOP STOP

Pseudo real-time operation

restarted and the control tasks execute freely during the duration of one in-
terrupt period. This pseudo real-time operation allows the user to analyze the
control system in a simulation environment in a fashion that is behaviorally
identical to a true real-time operation. Note that only the dispatching of the
control tasks is stopped. The target itself is never halted as communication
with PLECS must be maintained.

PIL Modes

The concept of using Override Probes and Read Probes allows tying actual
control code executing on a real MCU into a PLECS simulation without the
need to specifically recompile it for PIL.

You can think of Override Probes and Read Probes as the equivalent of test
points which can be left in the embedded software as long as desired. Soft-
ware modules with such test points can be tied into a PIL simulation at any
time.

Often, Override Probes and Read Probes are configured to access the registers
of MCU peripherals, such as analog-to-digital converters (ADCs) and pulse-
width modulation (PWM) modules. Additionally, specific software modules, e.g.
a filter block, can be equipped with Override Probes and Read Probes. This
allows unit-testing the module in a PIL simulation isolated from the rest of
the embedded code.

To permit safe and controlled transitions between real-time execution of the
control code, driving an actual plant, and pseudo real-time execution, in con-

16

Configuring PLECS for PIL

junction with a simulated plant, the following two PIL modes are distin-
guished:

• Normal Operation – Regular target operation in which PIL simulations
are inhibited.

• Ready for PIL – Target is ready for a PIL simulation, which corresponds
to a safe state with the power-stage disabled.

The transition between the two modes can either be controlled by the embed-
ded application, for example based on a set of digital inputs, or from PLECS
using the Target Manager.

Configuring PLECS for PIL

Once an embedded application is equipped with the PIL framework, and ap-
propriate Override Probes and Read Probes are defined, it is ready for PIL
simulations with PLECS.

PLECS uses the concept of Target Configurations to define global high-level
settings that can be accessed by any PLECS model. At the circuit level, the
PIL block is utilized to define lower level configurations such as the selection
of Override Probes and Read Probes used during simulation.

This is explained in further detail in the following sections.

Target Manager

The high-level configurations are made in the Target Manager, which is ac-
cessible in PLECS by means of the corresponding item in the Window menu.
The target manager allows defining and configuring targets for PIL simula-
tion, by associating them with a symbol file and specifying the communication
parameters. Target configurations are stored globally at the PLECS level and
are not saved in *.plecs or Simulink files. An example target configuration is
shown in the figure below.

17

2 Processor-in-the-Loop

Target Manager

The left hand side of the dialog window shows a list of targets that are cur-
rently configured. To add a new target configuration, click the button marked
+ below the list. To remove the currently selected target, click the button
marked -. You can reorder the targets by clicking and dragging an entry up
and down in the list.

The right hand side of the dialog window shows the parameter settings of
the currently selected target. Each target configuration must have a unique
Name.

The target configuration specifies the Symbol file and the communication
link settings.

The symbol file is the binary file (also called “object file”) corresponding to the
code executing on the target. PLECS will obtain most settings for PIL simu-
lations, as well as the list of Override Probes and Read Probes and their at-
tributes, from the symbol file.

Communication Links

A number of links are supported for communicating with the target. The de-
sired link can be selected in the Device type combo box. For communication
links that allow detecting connected devices, pressing the Scan button will
populate the Device name combo box with the names of all available devices.

18

Target Manager

Serial Device

The Serial device selection corresponds to conventional physical or virtual
serial communication ports. On a Windows machine, such ports are labeled
COMn, where n is the number of the port.

FTDI Device

If the serial adapter is based on an FTDI chip, the low-level FTDI driver can
be used directly by selecting the FTD2XX option. This device type offers im-
proved communication speed over the virtual communication port (VCP) asso-
ciated with the FTDI adapter.

TCP/IP Socket

The communication can also be routed over a TCP/IP socket by selecting the
TCP Socket device type.

TCP/IP Communication

In this case the Device name corresponds to the IP address (or URL) and
port number, separated by a colon (:).

19

2 Processor-in-the-Loop

TCP/IP Bridge

The TCP Bridge device type provides a generic interface for utilizing custom
communication links. This option permits communication over an external ap-
plication which serves as a “bridge” between a serial TCP/IP socket and a cus-
tom link/protocol.

Target Properties

By pressing the Properties button, target information can be displayed as
shown in the figure below.

Target Properties

In addition to reading and displaying information from the symbol file, PLECS
will also query the target for its identity and check the value against the one
stored in the symbol file. This verifies the device settings and ensures that the
correct binary file has been selected. Further, the user can request for a target
mode change to configure the embedded code to run in Normal Operation
mode or in Ready for PIL mode.

PIL Block

The PIL block ties a processor into a PLECS simulation by making Override
Probes and Read Probes, configured on the target, available as input and out-
put ports, respectively.

20

PIL Block

PIL Block

A PIL block is associated with a target defined in the target manager, which
is selected from the Target combo box. The Configure. . . button provides a
convenient shortcut to the target manager for configuring existing and new
targets.

PIL Block General Tab

The execution of the PIL block can be triggered at a fixed Discrete-Periodic
rate by configuring the Sample time to a positive value. As with other
PLECS components, an Inherited sample time can be selected by setting the
parameter to -1 or [-1 0].

A trigger port can be enabled using the External trigger combo box. This is
useful if the control interrupt source is part of the PLECS circuit, such as an
ADC or PWM peripheral model.

21

2 Processor-in-the-Loop

Typically, an Inherited sample time is used in combination with a trigger
port. If a Discrete-Periodic rate is specified, the trigger port will be sampled
at the specified rate.

Similar to the DLL block, the Output delay setting permits delaying the out-
put of each simulation step to approximate processor calculation time.

Note Make sure the value for the Output delay does not exceed the sample
time of the block, or the outputs will never be updated.

A delay of 0 is a valid setting, but it will create direct-feedthrough between
inputs and outputs.

PIL Block Inputs Tab

The PIL block extracts the names of Override Probes and Read Probes from
the symbol file selected in the target configuration and presents lists for selec-
tion as input and output signals, as shown in the figure above.

The number of inputs and outputs of a PIL block is configurable with the
Number of inputs and Number of outputs settings. To associate Over-

22

PIL Block

ride Probes or Read Probes with a given input or output, select an input/out-
put from the combo box on the right half of the dialog. Then drag the desired
Override Probes or Read Probes from the left into the area below or add them
by selecting them and clicking the > button. To remove an Override Probe or
Read Probe, select it and either press the Delete key or < button.

Note It is possible to multiplex several Override/Read Probe signals into one
input/output. The sequence can be reordered by dragging the signals up and
down the list.

Starting with PLECS 3.7, the PIL block allows setting initial conditions for
Override Probes.

Also new with PLECS 3.7 is the Calibrations tab, which permits modifying
embedded code settings such as regulator gains and filter coefficients.

PIL Block Calibrations Tab

Calibrations can be set in the Value column. If no entry is provided, the em-
bedded code will use the default value as indicated in the Default column.

23

2 Processor-in-the-Loop

24

3

PIL Framework

Plexim provides and maintains PIL Frameworks for specific processor families,
which encapsulate all the necessary embedded functionality for PIL operation.
Using the PIL framework, your C or C++ based embedded applications can be
enabled for PIL with minimal effort.

Currently, such frameworks and associated demo applications are available
for the Texas Instruments (TI) C2000™, ST Microelectronics 32bit F4 and the
Microchip dsPIC33F MCU families. However, support for other platforms can
be developed, as long as the following basic requirements are met:

• The code generation tools (compiler and linker) must be able to generate
binary files of the ELF format containing DWARF debugging information.

• The address width of the processor cannot exceed 32 bit.
• The least addressable unit (LAU) of the processor must be no larger than

16-bit.

Overview

The fundamental operation of a PIL simulation consists of overriding and
reading variables in the embedded application, and synchronizing the exe-
cution of the control task(s) with the simulation of a PLECS model. The PIL
framework therefore provides the following functionality:

• Read Probes for reading the values of variables in the embedded code exe-
cuting on the target and feeding the information into the simulation model.

• Override Probes for overriding variables in the embedded code with values
obtained from the simulation.

• A method to uniquely identify the software executing on the target.
• A remote agent, capable of communicating with PLECS and interpreting

commands related to PIL operation.

3 PIL Framework

• A mechanism for stopping and starting the execution of the control tasks.
• A means to provide configuration parameters to PLECS, such as the com-

munication baudrate.

Starting with PLECS 3.7, the PIL framework also supports Calibrations,
which are embedded–code parameters such as filter coefficients and regula-
tor gains. Calibrations can be modified in the PLECS environment during the
initialization of a PIL simulation and allow running multiple simulations with
different settings without the need for recompiling the embedded code (e.g. for
the tuning of regulators).

PIL Prep Tool

To facilitate defining and configuring PIL probes and calibrations, starting
with PLECS 3.7, a PIL Prep Tool utility is provided as part of the PIL frame-
work.

The PIL Prep Tool parses the embedded code for PIL specific macros, and au-
tomatically generates auxiliary files to be compiled and linked with the em-
bedded code. These auxiliary files contain functions for initializing probes and
calibrations, as well as special symbols which describe to PLECS the scaling
and formatting of the probes/calibrations. The generated files further include
a globally unique identifier (GUID) allowing PLECS to identify the embedded
code.

The PIL Prep Tool must be called as a pre-build step. Its integration into an
embedded project is specific to the compiler and integrated development envi-
ronment (IDE) used. Please refer to the PIL demo projects for more informa-
tion.

Probes

Read Probes

Read Probes are variables in the embedded code which are configured for read
access by PLECS. Any global variable can be configured as a Read Probe by
means of the PIL_READ_PROBE macro. For example, the statement below de-
fines and configures variable Vdc for read access by PLECS.

1 PIL_READ_PROBE(uint16_t , Vdc, 10, 5.0, "V");

26

Probes

The PIL_READ_PROBE macro results in a simple variable definition, e.g.
uint16_t Vdc, but is also recognized by the PIL Prep Tool, which places the
following statement in the auto generated file:

1 PIL_SYMBOL_DEF(Vdc, 10, 5.0, "V");

The PIL_SYMBOL_DEF macro expands into the definition of a specially format-
ted and statically initialized helper structure of type const.

1 typedef struct
2 {
3 int q; //!< fixed−point location
4 float ref; //!< reference value
5 char *unit; //!< unit string
6 } pil_var;
7

8 const pil_var PIL_V_Vdc = {10, 5.0, "V"}

PLECS searches for PIL_V symbols when parsing the binary file selected in
the target manager, and uses the information of the PIL_V symbols to trans-
late between the raw values stored in the Read Probe and the corresponding
physical value to be used in the simulation.

In the above example, the global variable Vdc is configured as a Q10 with a
reference of 5V. Hence, an integer value of 512 in this variable will be con-
verted by PLECS to 512

210 ∗ 5V = 2.5V.

A fixed point variable can be configured as a unitless number by using a refer-
ence value of 1.0 and setting an empty string (“”) for the unit.

The same approach can be used to configure floating point variables as Read
Probes.

1 PIL_READ_PROBE(float, MotorSpeed, 0, 1.0, "rpm");

The third parameter of the PIL_READ_PROBE macro, i.e. the fixed point loca-
tion, is ignored with probed floating point variables. However, it is possible to
specify reference values for floating point variables. For example, the macro
below configures MotorSpeed with a reference of 1800 rpm. Hence, a value of
0.5 in this variable will be converted to 0.5 ∗ 1800rpm = 900rpm.

It is also possible to configure structure members, as shown below.

27

3 PIL Framework

1 struct BATTERY {
2 PIL_READ_PROBE(int16_t, voltage, 10, 5.0, "V");
3 };

Override Probes

Override Probes, i.e. variables in the embedded code that can be overridden by
PLECS, are defined with the PIL_OVERRIDE_PROBE macro as illustrated below.

1 struct BATTERY {
2 PIL_OVERRIDE_PROBE(int16_t, voltage, 10, 5.0, "V");
3 };
4

5 struct BATTERY MyBattery;

The PIL_OVERRIDE_PROBE macro expands into a variable definition that is aug-
mented by two helper symbols which permit the MyBattery.voltage variable
to be overridden by PLECS.

1 struct BATTERY {
2 int16_t voltage;
3 int16_t voltage_probeV;
4 int16_t voltage_probeF;
5 };

While parsing a binary file for symbol information, PLECS detects variables
with matching _probeF and _probeV definitions and identifies those as Over-
ride Probes.

In addition, the PIL Prep Tool will recognize the PIL_OVERRIDE_PROBE macro
and generate the following auxiliary macro as described in the Read Probe
section:

1 PIL_SYMBOL_DEF(MyBattery_voltage, 10, 5.0, "V");

Note Only variables defined as Override Probes are configurable as inputs for
the PIL block.

28

Probes

An Override Probe is similar to a toggle switch with the following two states:

• Feedthrough – The Override Probe value is provided by the embedded ap-
plication

• Override – The Override Probe value is provided by PLECS

The state of an Override Probe can be switched dynamically at runtime and is
stored in the _probeF helper variable.

With this approach, the same build of the embedded application can be used
to control actual hardware or be tested in a PIL simulation, by simply switch-
ing the mode of Override Probes, without recompiling.

To properly interact with PLECS, the embedded code must access the Over-
ride Probes exclusively by the following set of macros:

Override Probe Macros

Macro Description

INIT_OPROBE(probe) Initializes an Override Probe.
Must be called during the ini-
tialization of the embedded
program.

SET_OPROBE(probe, value) Assigns a value to an Override
Probe.

The PIL Prep Tool will generate a function called PilInitOverrideProbes()
which contains INIT_OPROBE calls for all Override Probes. This function must
be called during the initialization phase of the embedded code before any
Override Probes are used.

If an Override Probe is in the feedthrough state, the value assigned to the
macro is written into probe. Otherwise, the override value supplied by
PLECS is used, which is stored in the _probeV helper variable.

An example for adding Override Probes to existing code is given in the follow-
ing two listings.

29

3 PIL Framework

Original code without use of Override Probes
1 Battery.voltage = measureBattVolt();
2

3 PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
4 &ControlVars.Id, &ControlVars.Iq, \
5 ControlVars.fluxPosSin, ControlVars.fluxPosCos);

Assume that during PIL simulations, we would like to override the vari-
able Battery.voltage as well as the values of ControlVars.Id and
ControlVars.Iq. While the battery voltage is updated by a simple write ac-
cess, the Id and Iq variables are modified by the PLX_VECT_parkRot(...) func-
tion via pointers, which need special handling for the SET_OPROBE macro inte-
gration.

The next listing illustrates how SET_OPROBE is properly used in this example.

Use of Override Probes
1 SET_OPROBE(Battery.voltage, measureBattVolt());
2

3 int16_t id, iq;
4

5 PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
6 &id, &iq, \
7 ControlVars.fluxPosSin, ControlVars.fluxPosCos);
8

9 SET_OPROBE(ControlVars.Id, id);
10 SET_OPROBE(ControlVars.Iq, iq);

For the battery voltage, the assignment can simply be replaced by the
SET_OPROBE macro. For the Id and Iq values, auxiliary variables are used,
updated by the PLX_VECT_parkRot(...) function, and subsequently assigned
to the Override Probes.

Note The SET_OPROBE macro must be used whenever a value is assigned to an
Override Probe. A direct assignment using the equal (=) statement will result in
unpredictable behavior.

30

Calibrations

Calibrations

Calibrations are variables used to configure algorithms in the embedded code,
such as filter coefficients, thresholds, timeouts and regulator gains.

The PIL framework provides the PIL_CALIBRATION macro for a convenient def-
inition of such calibrations. For example, the statement below declares and
configures variable Kp as a PIL calibration.

1 PIL_CALIBRATION(int16_t, Kp, 10, 5.0, "Ohm", 0, 10.0, 0.5);

The first five parameters of the PIL_CALIBRATION macro are identical to the
definition of a Read Probe. Accordingly, the macro expands into a simple vari-
able definition uint16_t Kp.

The additional three parameters define the allowable range of values for the
Calibration as well as its default value.

In the above example, the allowable range for Kp is 0 – 10Ω. Upon initializa-
tion, Kp is set to 0.5Ω.

The PIL_CALIBRATION macro is interpreted by the PIL Prep Tool to gener-
ate a PIL_SYMBOL_CAL_DEF macro. Similar to PIL_SYMBOL_DEF, this macro
produces the necessary information for PLECS to properly interpret and
handle the calibration. The PIL Prep Tool also generates a function called
PilInitCalibrations() which sets all Calibrations to default values. This
function must be called during the initialization phase of the embedded code
before any calibrations are used. It is also important that this function be
called in the PIL_CLBK_TERMINATE_SIMULATION callback to revert changes
made during a PIL simulation.

Code Identity

PLECS accesses Override Probes, Read Probes and Calibrations by address
(as opposed to name). The PIL block extracts the address of a given variable
from the debugging information contained in the binary file supplied to the
Target Manager. It is therefore important to ensure the selected binary file
matches the code that is actually executing on the target, or erroneous mem-
ory locations will be accessed. This is achieved by comparing a globally unique

31

3 PIL Framework

identifier (GUID) stored in the binary file with the value reported by the tar-
get. PLECS performs this check at the beginning of a simulation, as well as
when the PIL block is opened. As explained in section “Target Manager” (on
page 17), the target manager can be used to verify the match of the selected
binary file.

The GUID is generated at compile time by the PIL Prep Tool. Additionally,
macros for the compile time, and log-on name of the person who compiled the
code are created.

1 #define CODE_GUID {0xA8,0x45,0x11,0xDE,0x05,0x4C,0xAC,0x41}
2 #define COMPILE_TIME_DATE_STR "Sun May 30 10:11:43 2010"
3 #define USER_NAME "john doe"

The value of CODE_GUID is passed to the PIL framework during initialization;
see “Framework Configuration” (on page 43). The value must also be assigned
to the PIL_D_Guid constant as follows:

1 PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);

The other two macros can be used for diagnostics purposes using PIL con-
stants, as demonstrated in section “Configuration Constants” (on page 44).

Remote Agent

The remote agent services the communication link with PLECS and processes
commands received from PLECS to access Override Probes and Read Probes,
and to step the control code during a PIL simulation.

The remote agent supports both parallel and serial communications, but is
agnostic of the hardware specific details of the communication link.

The user of the PIL framework is responsible for implementing the driver for
a specific communication link, i.e. for configuration of hardware and basic re-
ception and transmission of data.

32

Remote Agent

Communication Callbacks

The PIL framework interacts with the application specific communication
driver by communication callback functions. Two callbacks exist:
• CommCallback() – Called at each system interrupt from

PIL_beginInterruptCall().
• BackgroundCommCallback() – Periodically called from

PIL_backgroundCall().
A given communication link might use either or both callbacks for its imple-
mentation. For implementing serial or parallel data exchange with the frame-
work, the user needs to utilize the input and output functions presented in the
following sections. The callback functions are registered with the framework
as described on page 43.

Serial Communication

For serial communication, the remote agent utilizes a simple network layer
with message framing and error checking, making the protocol suitable for a
wide range of links such as RS-232, RS-485, TCP/IP and CAN.
To ensure no characters are dropped during a serial communication, the Comm-
Callback() from the interrupt should be used to service the link.
A typical implementation of a serial communication callback is shown in the
SCI callback listing.
Notice the use of the following two functions:
• PIL_RA_serialIn(...) – For the reception of characters.
• PIL_RA_serialOut(...) – For the transmission of characters.

Parallel Communication

For parallel communication, complete messages are directly exchanged with
the framework as 16-bit integer arrays. The parallel link does not utilize any
framing or checksum. This link is therefore suited for exchanging messages
via shared memory where risk of transmission errors is negligible.
Parallel communications are typically serviced by the callback made from the
background loop.
• PIL_RA_parallelIn(...) – For the reception of a message.
• PIL_RA_parallelOut(...) – For the transmission of a message.

33

3 PIL Framework

SCI callback
1 void SCIPoll()
2 {
3 while(SciaRegs.SCIFFRX.bit.RXFFST != 0)
4 {
5 // a character has been received
6 PIL_RA_serialIn((int16)SciaRegs.SCIRXBUF.all);
7 }
8

9 int16_t ch;
10 if(SciaRegs.SCICTL2.bit.TXRDY == 1)
11 {
12 // link is ready for transmission
13 if(PIL_RA_serialOut(&ch))
14 {
15 SciaRegs.SCITXBUF = ch;
16 }
17 }
18 }

Framework Integration and Execution

Principal Framework Calls

The PIL framework provides the following two principal functions which must
be called periodically by the embedded application to enable PIL functionality:

• PIL_beginInterruptCall() – Framework call from interrupt.
• PIL_backgroundCall(...) – Framework call from background loop.

The PIL_beginInterruptCall() must be added at the beginning of the main
interrupt service routine, while the PIL_backgroundCall(...) is called peri-
odically from the background task.

The actions performed by those calls depends on whether a PIL simulation is
running or not.

In the following, the concept of the PIL integration is further explained for a
system with nested control tasks (see code snippet below).

In this example, the first control task is triggered by a hardware interrupt re-
lated to the system counter. A divider is used to dispatch a second, lower pri-
ority task. When the divider reaches a specified value, the second control task
is dispatched by a software interrupt.

34

Framework Integration and Execution

Control Task Dispatching
1 /**
2 * Main interrupt routine
3 */
4 Void TickFxn(UArg arg)
5 {
6 PIL_beginInterruptCall();
7

8 // fast control task
9 ControlTask1();

10

11 // slow control task
12 divider++;
13 if(divider == TASK2_PERIOD)
14 {
15 divider = 0;
16 Swi_post(Swi);
17 }
18 }
19

20 /**
21 * Software interrupt for slow control task
22 */
23 Void SwiFxn(UArg arg0, UArg arg1)
24 {
25 ControlTask2();
26 }
27

28 /**
29 * Background task
30 */
31 Void BackgroundTaskFxn(Void)
32 {
33 PIL_backgroundCall();
34 }

35

3 PIL Framework

Real-time Pseudo Real-time

PIL_beginInterruptCall CommCallback CommCallback
BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

PIL_backgroundCall BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

N/A

Mode-specific actions during framework execution

Assuming the slow task takes longer than a hardware interrupt period, the
second control task is interrupted several times before its execution is fin-
ished.

Now let us examine the operation of the framework in both real-time and
pseudo real-time mode.

The figure on page 36 shows the framework operation in non-PIL (real-time)
mode.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

CommCallback

PIL_backgroundCall

PIL framework during real-time operation

At the beginning of the hardware interrupt service routine, the
PIL_beginInterruptCall() is executed, which, in real-time mode, only calls

36

Framework Integration and Execution

the registered CommCallback function. As already mentioned, this callback
should be used to service the link for a serial communication to ensure no
characters are dropped.

Note During real-time operation, the PIL framework must have a minimal
influence on the timing of the dispatched control tasks. Therefore the Comm-
Callback function must be implemented as efficiently as possible.

As its name suggests, PIL_backgroundCall(...) function is executed from the
background loop, which in turn calls the BackgroundCommCallback(), if con-
figured. The PIL_backgroundCall(...) also parses incoming messages that
are buffered by the communication callback functions, and processes PIL com-
mands.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PILCLBK_STOP_TIMERS CLBK_START_TIMERS

PLECS Step

Communication loop

STOP

PIL framework during pseudo real-time operation

The next figure shows the system behavior during a PIL simulation, i.e. in
pseudo real-time mode, where control task execution is paced and synchro-
nized with the simulation of a PLECS model.
At the start of the hardware interrupt service routine, the task dispatching
stops and the system enters a communication loop.

37

3 PIL Framework

In this loop, both communication callbacks and the command parsing func-
tions are executed. This is different from true real-time mode, where the back-
ground communication callback and the command parsing functions are called
from the background loop.

Once a request for a new control step is received, the framework resumes
the control task dispatching and continues in free mode until the next
hardware interrupt occurs. Note that in pseudo real-time operation, the
PIL_backgroundCall() has no effect.

Control Callback

The transition between different operating modes as well as the pseudo real-
time operation require application-specific actions, implemented by means of a
Control Callback.

For example, when entering the Ready for PIL mode, the power actua-
tion must be turned off, e.g. by disabling the PWM outputs. Also, during
a PIL simulation the peripherals providing the timing to the control algo-
rithms must be stopped and restarted, as indicated by the arrows labeled
PIL_CLBK_STOP_TIMERS and PIL_CLBK_START_TIMERS.

These control actions are provided by a single callback function registered dur-
ing the framework initialization, and subsequently executed with an argument
specifying the specific action to be taken.

Consequently, the implementation of this callback typically consists of a
switch statement as shown below:

The following control-callback actions are defined and called during the frame-
work execution:

• PIL_CLBK_ENTER_NORMAL_OPERATION_REQ – Called when the target mode
“Normal Operation” has been requested. The application must indicate that
it has entered normal operation by executing PIL_inhibitPilSimulation().

• PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ – Called when the target mode
“Ready for PIL” has been requested. The application must confirm that it
is ready for PIL simulations by executing PIL_allowPilSimulation().

• PIL_CLBK_PREINIT_SIMULATION – Called before transitioning to a PIL simu-
lation. Can be used to reconfigure task dispatching, for example if an MCU
coprocessor such as the TI CLA is to be tied into the PIL loop. Interrupts
are disabled when this call is made.

38

Framework Integration and Execution

1 void PilCallback(PIL_CtrlCallbackReq_t aCallbackReq)
2 {
3 switch(aCallbackReq)
4 {
5 case PIL_CLBK_STOP_TIMERS:
6 //application specific code
7 break;
8 case PIL_CLBK_START_TIMERS:
9 //application specific code

10 break;
11 .
12 .
13 .
14 default:
15 //catching an undefined callback
16 break;
17 }
18 }

• PIL_CLBK_INITIALIZE_SIMULATION – Called at the beginning of a PIL simu-
lation. Used to reset the controller(s) and control task dispatching to initial
conditions.

• PIL_CLBK_TERMINATE_SIMULATION – Called at the end of a PIL simulation.
• PIL_CLBK_STOP_TIMERS – Called at the beginning of the control interrupt

when in PIL mode (pseudo real-time operation). Used to stop all timers and
counters related to the control tasks.

• PIL_CLBK_START_TIMERS – Called immediately before resuming the control
task(s) when in PIL mode (pseudo real-time operation). Used to restart all
timers and counters related to the control tasks.

In the following sections, the different actions are further described in context
of when they are called during the operation of the PIL framework. Please
also review the example projects provided by Plexim for further details and
control callback implementation examples.

Target Mode Switching

As described in the section “PIL Modes” (on page 16) the PIL framework dis-
tinguishes between the two target modes.

In Normal Operation mode, the target executes in true real-time operation
driving the load with an active power stage. PIL simulations are inhibited

39

3 PIL Framework

Normal Operation

do/Realtime Application

Ready for PIL

do/wait for start of PIL Simulation

PIL_allowPilSimulation() PIL_inhibitPilSimulation()

PIL_requestNormalMode
-> PIL_CLBK_ENTER_NORMAL_OPERATION_REQ

PIL_requestReadyMode
-> PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ

PIL target modes and mode change requests

in this mode due to the power stage being active. A PIL simulation can only
be started if the target is in Ready for PIL mode, which corresponds to a safe
state in which the power stage is disabled. As explained in the prior section,
the code for enabling or disabling the power stage is application specific and
must be provided by the user via the corresponding control callback.
A target mode change can be requested either from the Target Manager or
from the embedded application. Depending on the requested mode, the frame-
work executes the appropriate callback. If the requested mode is equal to the
current mode or while a PIL simulation is active, a mode request has no ef-
fect.
Target mode change requests are confirmed by the application code by calling
the PIL_allowPilSimulation() and PIL_inhibitPilSimualtion() functions.
Those functions also have no effect while a PIL simulation is active. Please
refer to the example projects provided by Plexim for further details and imple-
mentation examples.

Simulation Start and Termination

When running multiple PIL simulations and comparing results it is impor-
tant that all simulation-runs begin with identical initial conditions. This is

40

Framework Integration and Execution

achieved by means of the PIL_CLBK_INITIALIZE_SIMULATION request, which is
issued via the control callback at the beginning of a simulation.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Wait for 1. PIL Block Evaluation

First Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_INITIALIZE_SIMULATION

Start of PIL Simulation

Sending Initial Read Probe values

Start of a PIL Simulation

Note The initial conditions of Read Probes are fed into the PLECS model at
simulation time t=0. However, these values will be immediately modified if the
PIL block is also triggered at time t=0 and the output delay of the block is set to
zero.

At the end of a PIL simulation, a PIL_CLBK_TERMINATE_SIMULATION request is
issued prior to returning to real-time operation.

Control Dispatching

During a PIL simulation, the target operates in a pseudo real-time fashion
with the execution of the control tasks being paced and synchronized with the
simulation.
In the example shown in the next figure, the interrupt for Control Task 1 is
based on the period of a hardware timer. Therefore, the timer period directly
determines the amount of time available for the execution of the control tasks
until the next interrupt occurs.

41

3 PIL Framework

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Last Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_TERMINATE_SIM

Sending Final Read Probes PIL Simulation Finished PIL_CLBK_START_TIMERS

End of a PIL Simulation

Control Task 1

Control Task 2

Background Task

1 2 3

Timer Counter

4 5 6

Real-time operation with timer

To preserve the timing integrity in stepped mode, the hardware timer needs
to be halted at the beginning of the communication loop and resumed when a
step request is received, resulting in pseudo real-time operation.

By means of the CLBK_STOP_TIMERS and CLBK_START_TIMERS callback
actions, the user is able to provide the necessary functionality specific to the
actual application.

42

Framework Configuration

Control Task 1

Control Task 2

Background Task

Timer Counter

2 3

STOP

1

STOP STOP

Pseudo real-time operation with periodically stopped timer

Task Synchronization at Start of Simulation

When control algorithms are distributed over multiple (nested) tasks, it is im-
portant to synchronize the start of a PIL simulation with the sequencing of
the control tasks. In other words, after a PIL simulation has been started, a
predictable and repeatable amount of time should elapse until the first execu-
tion of each nested task.

Such synchronization can be achieved by actively resetting the task dispatcher
when the PIL_CLBK_INITIALIZE_SIMULATION request is received, as illustrated
below.

Framework Configuration

The initialization and configuration of the PIL framework consists of three
mandatory steps as well as a number of optional configurations.

• PIL_init() – Must be executed before any calls to the framework are made.
• PIL_setLinkParams(...) – Specifies the GUID to the framework and regis-

ters the interrupt callback for communication.
• PIL_setCtrlCallback(...) – Registers the control callback for PIL simula-

tions.

43

3 PIL Framework

Active task synchronization via simulation initialization callback
1 void PilCallback(PIL_CtrlCallbackReq_t aCallbackReq)
2 {
3 switch(aCallbackReq)
4 {
5 case PIL_CLBK_INITIALIZE_SIMULATION:
6 //application specific code
7 ...
8 //active synchronization of control task dispatching
9 divider = TASK2PERIOD −1;

10 break;
11 .
12 .
13 .
14 default:
15 //catching an undefined callback
16 break;
17 }
18 }

1 PIL_init();
2 PIL_setLinkParams(\
3 (unsigned char*)&PIL_D_Guid[0], \
4 (PIL_CommCallbackPtr_t)SCIPoll
5);
6 PIL_setCtrlCallback((PIL_CtrlCallbackPtr_t)PilCallback);

Optional configurations are as follows:

• PIL_setNodeAddress(...) – Configures node address for multi-drop serial
communications.

• PIL_setBackgroundCommCallback(...) – Registers the background commu-
nication callback.

Configuration Constants

The PIL_CONST_DEF macro is used for making settings and diagnostics infor-
mation available to PLECS. At a minimum, Guid[] must be defined. If a se-
rial link is used for communication between PLECS and the target, then it is
also necessary to specify to PLECS the communication rate by means of the

44

Initialization Constants

BaudRate definition. Optionally, further constants can be defined as shown be-
low.

1 PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);
2 PIL_CONST_DEF(unsigned char, CompiledDate[], COMPILE_TIME_DATE_STR);
3 PIL_CONST_DEF(unsigned char, CompiledBy[], USER_NAME);
4

5 PIL_CONST_DEF(uint32_t, BaudRate, BAUD_RATE);
6 PIL_CONST_DEF(uint16_t, StationAddress, 0);
7 PIL_CONST_DEF(char, FirmwareDescription[], "Demo project");

Note Depending on the build settings it might be necessary to provide specific
compiler/linker instructions (e.g. #pragma RETAIN) to prevent PIL definitions
and constants that are not referenced by the code from being removed from the
binary file.

Initialization Constants

The PIL framework also provides a mechanism to define “Initialization Con-
stants” (or “Configurations”) that can be read from the symbol file at the be-
ginning of a simulation and used to configure the PLECS circuit.

PIL_CONFIG_DEF macro is used for defining such constants. They must be of
integer or float type. Strings and arrays are not supported.

1 PIL_CONFIG_DEF(uint32_t, SysClk, SYSCLK_HZ);
2 PIL_CONFIG_DEF(uint32_t, PwmFrequency, PWM_HZ);
3 PIL_CONFIG_DEF(uint32_t, ControlFrequency, CONTROL_HZ);
4 PIL_CONFIG_DEF(uint16_t, ProcessorPartNumber, 28069);

To retrieve the values of the initialization constants in PLECS use the
plecs(’get’, ’path to PIL block’, ’InitConstants’) command either in a
m-file or in the model initialization commands.

45

3 PIL Framework

1 initConstants = plecs('get','./PIL','InitConstants');
2

3 Processor = initConstants.ProcessorPartNumber;
4 SysClk = initConstants.SysClk;
5 Fs = initConstants.ControlFrequency;
6 Fpwm = initConstants.PwmFrequency;

46

4

Microchip dsPIC33F Peripheral
Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical

4 Microchip dsPIC33F Peripheral Models

user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

48

Microchip Motor Control PWM

Microchip Motor Control PWM

The PLECS peripheral library provides two blocks for the Microchip Motor
Control PWM (MCPWM) module, one with a register-based configuration
mask and a second with a graphical user interface. The figure below shows
the register-based version of the MCPWM module.

Register-based MCPWM module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both MCPWM blocks interface with other PLECS components over the follow-
ing terminal groups:

• PDCx - input ports for duty cycle register
• PSECMP - input port for special event trigger compare register
• PWMIF - output port for PWM interrupt flag
• SEVT - output port for special event trigger
• PWMHx/Lx - output ports for PWM signals

Note In the PLECS MCPWM module, PWM Faults and PWM Output Over-
ride have not been modeled

49

4 Microchip dsPIC33F Peripheral Models

MCPWM Module Overview

The PLECS MCPWM model implements the most relevant features of the
MCU peripheral.

Overview of the MCPWM module[1]

The MCPWM model implements the following features:

• PWM Clock Control
• PWM Output Control and Resolution
• Interrupt Control
• Special Event Trigger
• Dead Time Generator

50

Microchip Motor Control PWM

A section summarizing the differences of the PLECS MCPWM module as com-
pared to the actual MCPWM module is provided in the “Summary” (on page
57) section.

PWM Clock Control

The modeled MCPWM realizes a counter that can operate in three different
modes for the generation of asymmetrical and symmetrical PWM signals. The
three supported modes are:
• Free Running mode
• Continuous Up/Down mode
• Continuous Up/Down mode with interrupts for double PWM updates
The counter for these modes is visualized below.

Counter modes [1]

In Free Running mode, the counter is incremented from 0 to a counter pe-
riod PTPER using a counter clock operated at a clock frequency of FCY . The
PTPER value corresponding to a desired PWM frequency (FPWM) can be cal-
culated as:

PTPER =
FCY

FPWM · PTMRPrescaler
− 1

51

4 Microchip dsPIC33F Peripheral Models

When the counter reaches the period (PTPER), the subsequent count value
is reset to zero, duty cycle (PDCx) and special event (PSECMP) registers are
updated, and the sequence is repeated.
In the Continuous Up/Down mode, and Continuous Up/Down mode with inter-
rupts for double PWM updates, the counter is incremented from 0 to a counter
period PTPER and then decremented back to 0 using a counter clock operated
at a clock frequency of FCY . The PTPER value corresponding to a desired
PWM frequency (FPWM) can be calculated as:

PTPER =
FCY

2 · FPWM · PTMRPrescaler
− 1

In the Continuous Up/Down mode, when the counter reaches 0, the duty cycle
(PDCx) and special event (PSECMP) registers are updated.
In the Continuous Up/Down mode with interrupts for double PWM updates,
the duty cycle (PDCx) and special event (PSECMP) registers are updated
when the counter reaches 0 and PTPER.

Note In the PLECS MCPWM module, Single Event Mode is not allowed.

While the system clock and the period counter value are separately defined
in the mask parameters, the counter mode and the clock divider are jointly
configured in the PTCON register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

PTMOD<1:0>
8

PTCKPS<1:0>PTOPS<3:0>PTSIDLPTEN

PTCON Register Configuration [1]

The input clock (TCY) derived from the oscillator source can be prescaled
using the PTCKPS bits in the PTCON register. Additionally, the counter
mode selected using the PTMOD bits and the time-based output post scalar
(PTOPS) bits determine the generation of the PWM interrupt flag.

Example Configuration – Step 1

This example shows the configuration of the PWM module operating in Free
Running mode with a 50 µs period. The PTCON register is configured to:

PTCON = 4 =̂ 0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
PTOPS

0 1︸︷︷︸
PTCKPS

0 0︸︷︷︸
PTMOD

52

Microchip Motor Control PWM

According to this configuration, the time-based submodule is operating in the
Free Running mode with a timer clock period four times the system clock pe-
riod. For a PTPER value of 999 and an 80 MHz system clock, the resulting
PWM signal has the following period:

TPWM = (PTPER + 1) · PTCKPS

FCY
= 50 µs.

PWM Output Control and Resolution

The MCPWM model for a non-zero duty cycle results in outputs of the PWM
generators to be driven active at the beginning of the PWM period. Each
PWM output will be driven inactive when the value of the counter matches
the duty cycle value of the PWM generator. If the value of the duty cycle reg-
ister is zero, the output on the corresponding PWM pin is inactive for the en-
tire PWM period. The PWM output is active for the entire period if the value
of PDC is greater than PTPER.

Note In the implemented model, immediate update of the PDC and PSECMP
registers is not modeled.

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9

1617181920212223

8

PWMPIN HPOL LPOL ALTI2C BOREN FPWRT<2:0>

FPOR:POR Register Configuration [1]

The HPOL and LPOL bits in the FPOR:POR register determine the output
polarity of the high-side and low-side output pins of the PWM generators. For
example, if the LPOL bit is set, then the low-side output is high when the
PWM is active and low when the PWM is inactive. If the bit is cleared, then
the low-side output is low when the PWM is active and high when the PWM
is inactive.

53

4 Microchip dsPIC33F Peripheral Models

7 6 5 4 3 2 1 015 14 13 12 11 10 9

PEN1L
8

PEN1HPEN2LPEN2HPEN3LPEN3HPEN4LPEN4HPMOD1PMOD2PMOD3PMOD4

PWMCON1 Register Configuration [1]

In the MCPWM, each PWM generator can be operated in either complemen-
tary or independent mode. In complementary mode both output pins cannot
be active simultaneously. Additionally, a dead time is inserted during device
switching making both outputs inactive for a short period. In independent
mode there are no restrictions on the state of the pins for a given output pin
pair. Additionally, the dead time module is disabled when the PWM module is
operated in independent mode. The mode for each of the PWM generators is
selected by configuring the bits PMOD4:PMOD1 in the PWMCON1 register.

The first bit of the register PDC determines whether the PWM signal edge
occurs at the TCY or TCY

2 boundary. The figure below illustrates the effect of
this bit on the PWM output.

Duty cycle resolution timing diagram, Free Running mode, and 1:1 prescaler
selection [1]

Special Event Trigger

The MCPWM can be configured to trigger the Analog-to-Digital (ADC) con-
verter using the special event compare register (PSECMP). This allows ADC
sampling and conversion timing to be synchronized to the PWM time base and

54

Microchip Motor Control PWM

provides the flexibility of programming the start of conversion at any point
within the PWM period.

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

SEVTCMP<14:0>SEVTDIR

PSECMP Register Configuration [1]

The PWM counter register is compared to the SEVTCMP bits in the PSECMP
register and generates a trigger signal when the counter value is equal to the
SEVTCMP bits. In Up/Down Count mode, the SEVTDIR bit provides added
flexibility on the generation of the trigger signal. When this bit is set, the
trigger is generated on a match event when the counter is counting down.
When the bit is set to zero, the trigger is generated on a match event when
the counter is counting up.

Additionally, the Special Event Trigger Postscaler (SEVOPS) bits in the PWM-
CON2 register allows a 1:1 to 1:16 post scale ratio. These bits can be config-
ured if the ADC conversions are not required every PWM cycle.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

UDIS
8

OSYNCIUESEVOPS<3:0>

PWMCON2 Register Configuration [1]

Interrupt Control

The MCPWM module can be configured to generate an interrupt flag depend-
ing on the mode of operation and the time base postscaler (PTOPS) bits in the
PTCON register. In the model the interrupt flag (PWMIF) is internally reset
automatically after one simulation step.

In the Continuous Up/Down mode with interrupts for double PWM updates, an
interrupt event is generated each time the counter equals 0 and PTPER. The
postscaler selection bits are ignored in this mode.

In the Free Running mode the interrupt flag is generated when the counter
is reset to 0. In the Continuous Up/Down mode, the interrupt flag is gener-
ated when the counter is equal to 0 and the counter is counting up. In both of
these modes, the postscaler bits can be used to reduce the frequency of inter-
rupt events.

55

4 Microchip dsPIC33F Peripheral Models

Dead Time Generator

In independent mode, the dead-time module is inactive and no dead-time is
inserted between the high-side and low-side PWM signals of a PWM output
generator. When operated in complementary mode, each PWM output gener-
ator can be configured to have some dead time between the turn on and turn
off of the high-side and low-side PWM signals.

Dead time insertion [1]

The Dead Time Control Register 1 (PDCTON1) is used to configure two dif-
ferent dead-time units (Unit A and Unit B). The DTA bits are used to assign
a 6-bit dead-time value for Unit A. The DTAPS bit is used to configure the
dead-time clock as a multiple of the system clock (TCY). The corresponding
bits DTB and DTBPS are used to configure Unit B.

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

DTA<5:0>DTAPS<1:0>DTB<5:0>DTBPS<1:0>

PDTCON1 Register Configuration [1]

The dead-time for Unit A and Unit B, are calculated as follows:

Dead T ime = (DTx + 1) · TCY ·DTxPS ,

where x refers to Unit A or B.

56

Microchip Motor Control PWM

The Dead Time Control Register 2 (PDCTON2) contains configuration bits
that are used to control the insertion of dead time when the high-side or low-
side PWM signals become active. The DTS1I - DTS4I bits select the dead time
inserted before PWML1 - PWML4, respectively, are driven active. The DTS1A
- DTS4A bits select the dead time inserted before PWMH1 - PWMH4, respec-
tively, are driven active.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTS1I
8

DTS1ADTS2IDTS2ADTS3IDTS3ADTS4IDTS4A

PDTCON2 Register Configuration [1]

Summary of PLECS Implementation

The PLECS MCPWM module models the major functionality of the actual
MCPWM module. Below is a summary of differences of the PLECS MCPWM
module compared to the actual MCPWM module:

• PWM Faults and PWM Output Override are not supported.
• Single Event Mode is not supported.
• Immediate update of the PDC and PSECMP registers is not supported.
• PWM update lockout is not supported.
• The interrupt flag (PWMIF) is internally reset automatically after one sim-

ulation step.

57

4 Microchip dsPIC33F Peripheral Models

Microchip Motor Control ADC

The PLECS peripheral library provides two blocks for the Microchip Motor
Control ADC (MCADC) module, one with a register-based configuration mask
and a second with a graphical user interface. The figure below shows the ap-
pearance of the register-based version.

Register-based MCADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both MCADC blocks interface with other PLECS components over the follow-
ing terminal groups:

• ANx - input ports for duty cycle register
• Triggers - input port for INT0, Timer, and PWM triggers
• ADCBUFx - output port for ADC buffer register
• ADIF - output port for ADC interrupt flag

Note In the PLECS MCADC module, the GP timer triggers (Timer 3 and
Timer 5) and Motor Control PWM 1 and 2 triggers have been lumped into a sin-
gle Timer and PWM trigger, respectively.

58

Microchip Motor Control ADC

MCADC Module Overview

The PLECS MCADC model implements the most relevant features of the
MCU peripheral.

Overview of the MCADC module without DMA [2]

The MCADC model implements the following features:

• ADC Configuration

59

4 Microchip dsPIC33F Peripheral Models

• ADC Sampling and Conversion
• Multi-channel ADC Sampling Mode
• ADC Input Selection Mode
• ADC Interrupt Logic
• ADC Buffer Fill Mode

A section summarizing the limitation of the PLECS MCADC module as com-
pared to the actual MCADC module is provided in the “Summary” (on page
68) section.

ADC Configuration

The MCADC module can be operated either in 10-bit or 12-bit operation mode.
The 12-bit Operation Mode bit (AD12B) in the ADCON1 register allows the
ADC module to function as either a 10-bit, 4-channel ADC (when the AD12B
bit is cleared) or a 12-bit, single-channel ADC (when the AD12B bit is set).
In 10-bit mode, the CHPS bits in the ADCON2 register can be configured to
operate the MCADC module to convert:

• only CH0

• CH0 and CH1

• CH0, CH1, CH2, and CH3

The VCFG bits in the ADCON2 register allow the selection of the voltage ref-
erences for the MCADC module. The voltage reference high (VREFH) and the
voltage reference low (VREFL) for the ADC module can be supplied from the
internal AVDD and AVSS voltage rails or the external VREF+ and VREF− in-
put pins. The table below summarizes the different configurations that are
possible by setting the VCFG bits.

VCFG VREFH VREFL

000 AVDD AVSS

001 AVDD VREF−

010 VREF+ AVSS

011 VREF+ VREF−

1xx AVDD AVSS

60

Microchip Motor Control ADC

The MCADC module clock (TAD) can be configured to use the system clock
(TCY) or a dedicated internal RC clock (TADRC). The figure below summarizes
the generation of the ADC clock.

ADC Clock Generation [2]

While the system clock and the period counter value are separately defined in
the mask parameters, the ADC clock source selection (ADRC) and the clock
divider (ADCS) are jointly configured in the ADCON3 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

SAMC<4:0>ADRC ADCS<7:0>

ADCON3 Register Configuration [2]

The clock divider is used to lower the frequency when the ADC clock is de-
rived from the system clock. The ADCS bits allow the clock to be scaled to
one of 64 settings, from 1:1 to 1:64. The table below summarizes the effect the
ADCS and ADRC bits have on the ADC clock period.

ADRC ADC Clock Period (TAD)

0 TCY · (ADCS + 1)

1 TADRC

Note ADCS values over 63 are reserved in the actual hardware and will be
flagged as an error in the PLECS MCADC module.

The MCADC module can be configured to output the ADC results in four dif-
ferent numerical formats. The FORM bits in the ADCON1 register select the
data format. Further, in the PLECS MCADC module the output format can
be configured as quantized double format for convenience. The Output mode

61

4 Microchip dsPIC33F Peripheral Models

block parameter selects if the FORM bits are used or if the output is pre-
sented as a quantized double format. The table below summarizes the differ-
ent available formats.

FORM Output Mode Data Format

00 Use FORM bits Unsigned Integer

01 Use FORM bits Signed Integer

10 Use FORM bits Unsigned Fractional

11 Use FORM bits Signed Fractional

xx Quantized Double Quantized Double

ADC Sampling and Conversion

Automatic Sample and Triggered Conversion Sequence [2]

The actual MCADC module can be configured to operate in different modes.
Below is a list of the possible configurations for the actual MCADC:

• Manual Sample and Manual Conversion Sequence
• Manual Sample and Automatic Conversion Sequence
• Manual Sample and Triggered Conversion Sequence

62

Microchip Motor Control ADC

• Automatic Sample and Manual Conversion Sequence
• Automatic Sample and Automatic Conversion Sequence
• Automatic Sample and Triggered Conversion Sequence
In the PLECS MCADC module only the Automatic Sample and Triggered
Conversion Sequence mode has been modeled. The figure above summarizes
the operation of this mode.
In this mode, the sampling of the channels starts automatically after a conver-
sion is completed. Automatic sampling is enabled by setting the ASAM bit in
the ADCON1 register. The conversion is started upon trigger event from one
of the external SOC trigger sources. This allows ADC conversion to be syn-
chronized with the internal or external events. The external trigger source is
selected by configuring the SSRC bits to
• 001 when using External Interrupt Trigger
• 010 or 100 when using Timer Interrupt Trigger
• 011 or 101 when using Motor Control PWM Special Event Trigger

Note In the PLECS MCADC module, clearing the ASAM bit is not allowed.
This bit must always be set. Additionally, in the actual hardware the ADC mod-
ule takes some time to stabilize. There is no such requirement in the imple-
mented MCADC module.

The MCADC can be operated either as a single-channel 12-bit or multi-
channel 10-bit module. The time required to complete a conversion (TCONV) is
dependent on whether the ADC is operated in 12-bit or 10-bit mode. The table
below summarizes the amount of time required to completed one conversion in
the two modes:

Mode TCONV

10-bit 12 · TAD

12-bit 14 · TAD

Multi-channel ADC Sampling Mode

The MCADC works as single channel converter when operated in as a 12-bit
ADC module. In this mode the inputs to CH1, CH2, and CH3 are ignored and

63

4 Microchip dsPIC33F Peripheral Models

only CH0 is converted. When operated as a 10-bit ADC module, the MCADC
can be configured to operate as a multi-channel ADC module. In the multi-
channel operation, the MCADC module can be configured to operate in simul-
taneous or sequential sampling modes. In simultaneous sampling mode, the
sampling of all channels is stopped when an SOC trigger is received. The fig-
ure below shows the timing diagram of a 4-channel module operated with si-
multaneous sampling in the Automatic Sample and Triggered Conversion Se-
quence mode.

4-Channel Simultaneous Sampling [2]

When the multi-channel ADC module is operated in sequential mode, the
sampling for CH0 ends when an SOC trigger is received. The sampling of
CH1 ends once the conversion of CH0 is completed. The same logic applies
to the end of sampling for CH2 and CH3. The figure below shows the timing
diagram of a 2-channel module operated with sequential sampling in the Au-
tomatic Sample and Triggered Conversion Sequence mode.

2-Channel Sequential Sampling [2]

Note Any SOC trigger received while the MCADC module is converting will
be lost. Conversions are started when an SOC trigger is received while the
module is sampling all active channels.

64

Microchip Motor Control ADC

ADC Input Selection Mode

The ADCHS0 and ADCHS123 registers are used to configure which analog
input channels are selected as the positive and negative input selections for
CH0, and CH1, CH2, and CH3, respectively. The figures below show the two
registers:

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

CH0NACH0SB<4:0>CH0NB CH0SA<4:0>

ADCHS0 Register Configuration [2]

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

CH123SBCH123NB<1:0> CH123NA<1:0> CH123SA

ADCHS123 Register Configuration [2]

In the MCADC module, each channel can be configured to operate in fixed
input selection mode which uses only MUXA, or in alternate input selection
mode where both MUXA and MUXB are used. The table below summarizes
the effect of the control bits on the analog input selection for each channel.

When operated in fixed input selection mode, chosen by setting the ALTS bit
in the ADCON2 register to zero, only MUXA and the associated control bits
are used to select the positive and negative analog inputs for each channel.
When operated as a 12-bit module, only CH0 is sampled.
When operated in alternate input selection mode, chosen by setting the ALTS
bit in the ADCON2 register to 1, both MUXA and MUXB are used to select
the positive and negative analog inputs for each channel. Again, when oper-
ated as a 12-bit module, only CH0 is sampled. In this mode the ADC com-
pletes one sweep using the MUXA selection and uses the MUXB selection in

65

4 Microchip dsPIC33F Peripheral Models

the next sweep. In the next sweep MUXA is used again. This switch between
MUXA and MUXB continues while the ADC is operated in this mode. The
figure below shows the operation of a 2-channel module with alternate input
selection in sequential sampling mode. The interrupt has been configured to
occur after 4 conversions.

2-Channel Sequential Sampling in Alternate Input Selection mode [2]

The MCADC module provides further flexibility by allowing CH0 to be op-
erated in scan mode. The Channel Scanning mode is enabled by setting the
Channel Scan bit (CSCNA) in the ADCON2 register.

2-Channel Sequential Sampling in Alternate Input Selection mode with Chan-
nel Scan enabled [2]

The desired conversion sequence is selected by configuring the appropriate
bits in the channel selection register (AD1CSSL). The conversions are car-
ried out in ascending order. If operated in alternate input selection mode with
channel scan enabled, MUXA software control is ignored for CH0 and the

66

Microchip Motor Control ADC

ADC module converts the first selected analog input. In the next sweep, the
inputs selected by MUXB are measured. In the following sweep the next se-
lected analog input is sampled for CH0. Input selections for CH1, CH2, and
CH3 are unaffected. The figure above shows an example of a 2-channel se-
quential sampling module operated in alternate input selection mode with
channel scanning enabled. AN2 and AN3 have been selected for channel scan-
ning and AN8 has been selected by the MUXB input selector for CH0. An in-
terrupt is generated after 8 conversions.

ADC Interrupt Logic

CHPS SIMSAM SMPI Conversions per
Interrupt

Description

00 x N-1 N 1-Channel mode

01 0 N-1 N 2-Channel, Sequential
Sampling mode

1x 0 N-1 N 4-Channel, Sequential
Sampling mode

01 1 N-1 2 · N 2-Channel, Simultane-
ous Sampling mode

1x 1 N-1 4 · N 4-Channel, Simultane-
ous Sampling mode

The PLECS MCADC module reflects the properties of an actual MCADC mod-
ule without DMA. The ADC module writes the results of the conversions into
the analog-to-digital result buffer as conversions are completed. The SMPI
bits in the ADCON2 register determine the number of conversions for the
MCADC module before an interrupt is generated. The results are written into
the ADC buffer after each conversion is completed. The MCADC module sup-
ports 16 result buffers. Therefore, the maximum number of conversions per
interrupt must not exceed 16.
The number of conversions per ADC interrupt depends on the following pa-
rameters, which can vary from one to 16 conversions per interrupt:
• Number channels selected
• Sequential or Simultaneous Sampling
• Samples Convert Sequences Per Interrupt bits (SMPI) settings

67

4 Microchip dsPIC33F Peripheral Models

The table above summarizes the effect each of these factors has on the num-
ber of conversions per interrupt.

ADC Buffer Fill Mode

When the Buffer Fill Mode bit (BUFM) in the ADCON2 register is set, the 16-
word results buffer is split into two 8-word groups: a lower group (ADC1BUF0
through ADC1BUF7) and an upper group (ADC1BUF8 through ADC1BUFF).
The 8-word buffers alternately receive the conversion results after each ADC
interrupt event. When the BUFM bit is set, each buffer size equals eight.
Therefore, the maximum number of conversions per interrupt must not exceed
8. When the BUFM bit is cleared, the complete 16-word buffer is used for all
conversion sequences.

Summary of PLECS Implementation

The PLECS MCADC module models the major functionality of the actual
MCADC module. Below is a summary of differences of the PLECS MCADC
module compared to the actual MCADC module:

• The PLECS MCADC module models the Microchip MCADC module without
DMA.

• The GP timer triggers (Timer 3 and Timer 5) and the Motor Control PWM
1 and 2 triggers have been lumped together into single Timer and PWM
trigger, respectively.

• ADCS values over 63 in the ADCON3 register will be flagged as an error in
the PLECS MCADC module.

• Only Automatic Sample and Triggered Conversion Sequence mode is sup-
ported by the PLECS MCADC module. Clearing the ASAM bit in the AD-
CON1 register will be flagged as an error.

• The PLECS MCADC module does not require any time for stabilization dur-
ing startup.

• Any SOC trigger received while the MCADC module is converting will be
lost. Conversions are started when an SOC trigger is received while the
module is sampling all active channels.

• The output results are provided according to the numerical format specified
by the FORM bits in the ADCON1 register or as quantized double values.

68

Microchip Motor Control ADC

Reference
1 - Pictures provided with Courtesy of Microchip, Literature Source: Motor

Control PWM Reference Guide, Literature Number DS70187E, February
2007 - Revised September 2012

2 - Pictures provided with Courtesy of Microchip, Literature Source: Motor
Control ADC Reference Guide, Literature Number DS70183D, December
2006 - Revised April 2012

69

4 Microchip dsPIC33F Peripheral Models

70

5

Embedded Application

This chapter provides additional information about the dsPIC “FOC” demo
application.

Importing the MPLAB X Demo Project

The source code of the embedded demonstration project is provided as part
of the PIL Framework installation and can be directly opened as a project in
MPLAB X.

Configuring the Project

The building of the demo project is configured to include a custom pre-build
action.

At the start of a build, the PIL Prep Tool is called to generate the auxiliary
symbols used by PLECS, as explained in “PIL Prep Tool” (on page 26).

5 Embedded Application

Figure 5.1: Pre-build step

This addtional build step is configured under Project Properties in the
Building section.

Rebuilding the Project

The project can be compiled and flashed by clicking the Make and Program
Device button on the toolbar or selecting Run Project from the Run menu.

After reflashing the dsPIC with your own project, make sure that the PLECS
target manager is pointing to the correct symbol file (located in the dist/de-
fault/production folder).

Project Structure

The following is a brief description of the files which make up the embedded
demo application.

Initialization and Task Dispatching

The following files contain the routines for the initialization of the core, setup
of timers, hardware interrupts, software interrupts and tasks.

72

Project Structure

• main.c/h – main()-routine, hardware interrupt routine.
• init.c/h – Initialization of system clock, I/O and peripherals.

Control Law

The FOC control algorithms include the following functionality:

1 Measurement of phase currents and transformation into dq-frame.

2 Synchronous frame current control with decoupling, output saturation and
anti-windup.

3 Space-vector modulation with voltage compensation.

The files related to the control algorithms are the following:

• calib.c/h – Control calibrations (settings).
• pu.c/h – Fixed-point reference values.
• control.c/h – Control tasks.
• plx_control.lib – Fixed-point control library:

plx_types.h – Type definitions
fp_math.h – Fixed-point math header file
pidq.h – Synchronous frame PI controller
vector.h – Park transformations
svpwm.h – Space vector modulation

In addition, the modules folder contains the header files for the fixed-point
control library.

Communication Interface

The demo project utilizes the universal asynchronous receiver/transmitter
(UART) interface for exchanging information with PLECS. The following files
contain the code related to the UART interface:

• init.c – Initialization of peripheral and io.
• main.c – Communication callback function PollUart()

73

5 Embedded Application

PIL Functionality

These are the files that are enabling the demo application for PIL simulation
with PLECS.

• pil.h – PIL framework API.
• pil_ctrl.c/h – Control callback for stepping the control tasks during a PIL

simulation. See “Control Callback” (on page 38).
• pil_symbols_c.inc/c – Defines PIL constants according to “Configuration

Constants” (on page 44).
• pil_symbols_p.inc/c – Definitions of override and read probe attributes.

See “Probes” (on page 26).
• pil_framework_lib.lib – PIL framework library.

Note The files pil_symbols_p.inc and pil_symbols_c.inc are generated by
the PIL Prep Tool and should therefore not be edited or revision controlled.

74

electrical engineering software

Plexim GmbH  info@plexim.com  www.plexim.com

User Manual Version 3.4

The simulation platform for
power electronic systems

PLECS

 U
ser M

anual Version 3.4

	Contents
	Software Requirements

	Getting Started
	Configuring the Hardware
	Loading the Firmware
	Configuring the PLECS Model
	PIL Target
	Testing the Communication
	PIL Block

	Running the PLECS Model

	Processor-in-the-Loop
	Motivation
	How PIL Works
	PIL Modes
	Configuring PLECS for PIL
	Target Manager
	Communication Links

	PIL Block

	PIL Framework
	Overview
	PIL Prep Tool
	Probes
	Read Probes
	Override Probes

	Calibrations
	Code Identity
	Remote Agent
	Communication Callbacks
	Serial Communication
	Parallel Communication

	Framework Integration and Execution
	Principal Framework Calls
	Control Callback
	Target Mode Switching
	Simulation Start and Termination
	Control Dispatching
	Task Synchronization at Start of Simulation

	Framework Configuration
	Configuration Constants
	Initialization Constants

	Microchip dsPIC33F Peripheral Models
	Introduction
	Microchip Motor Control PWM
	MCPWM Module Overview
	PWM Clock Control
	PWM Output Control and Resolution
	Special Event Trigger
	Interrupt Control
	Dead Time Generator
	Summary of PLECS Implementation

	Microchip Motor Control ADC
	MCADC Module Overview
	ADC Configuration
	ADC Sampling and Conversion
	Multi-channel ADC Sampling Mode
	ADC Input Selection Mode
	ADC Interrupt Logic
	ADC Buffer Fill Mode
	Summary of PLECS Implementation

	Embedded Application
	Importing the MPLAB X Demo Project
	Configuring the Project
	Rebuilding the Project
	Project Structure
	Initialization and Task Dispatching
	Control Law
	Communication Interface
	PIL Functionality

