
electrical engineering software

Plexim GmbH  info@plexim.com  www.plexim.com
PLECS

 U

ser M
anual Version 3.4

THE SIMULATION PLATFORM FOR

POWER ELECTRONIC SYSTEMS

PIL-BLDC Demo for STM32 F4 MCUs Version 1.0

How to Contact Plexim:

+41 44 533 51 00 Phone%
+41 44 533 51 01 Fax

Plexim GmbH Mail)
Technoparkstrasse 1
8005 Zurich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

PIL-BLDC Demo for STM32 F4 MCUs

© 2014 by Plexim GmbH

The software PLECS described in this manual is furnished under a license
agreement. The software may be used or copied only under the terms of the
license agreement. No part of this manual may be photocopied or reproduced
in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their re-
spective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii

Software Requirements . 1

1 Getting Started 3

Programming the MCU . 5

Configuring the PLECS Model . 7

PIL Target . 7

Testing the Communication . 7

PIL Block . 8

Running the PLECS Model . 12

2 Processor-in-the-Loop 13

Motivation . 13

How PIL Works . 14

PIL Modes . 16

Configuring PLECS for PIL . 17

Target Manager . 17

Communication Links . 18

PIL Block . 20

Contents

3 PIL Framework 25
Overview . 25

PIL Prep Tool . 26

Probes . 26

Read Probes . 26

Override Probes . 28

Calibrations . 31

Code Identity . 31

Remote Agent . 32

Communication Callbacks . 33

Serial Communication . 33

Parallel Communication . 33

Framework Integration and Execution 34

Principal Framework Calls . 34

Control Callback . 38

Target Mode Switching . 39

Simulation Start and Termination 40

Control Dispatching . 41

Task Synchronization at Start of Simulation 43

Framework Configuration . 43

Configuration Constants . 44

Initialization Constants . 45

4 STM32 F4xx Peripheral Models 47
Introduction . 47

System Timer for PWM Generation (Output Mode) 49

Timer Subtypes . 50

General Counter Behavior . 50

Interrupt Flags . 53

Output Mode Controller . 54

4 channel Advanced Timer . 56

iv

Contents

4 channel General Purpose Timer 58

2 channel General Purpose Timer 60

1 channel General Purpose Timer 61

GPIO Mode . 63

Analog-Digital Converter (ADC) . 64

ADC Module Overview . 65

ADC Converter with Result Registers 66

ADC Sample Logic . 67

ADC Interrupt Logic . 72

5 Embedded Application 75
Opening the uVision Demo Project . 75

Configuring the Project . 75

Rebuilding the Project . 76

Project Structure . 76

Initialization and Task Dispatching 76

Control Law . 77

Communication Interface . 77

PIL Functionality . 77

IO Map . 78

v

Contents

vi

Before You Begin

This document contains instructions on how to test and evaluate the PLECS
Processor-In-the-Loop (PIL) functionality in the context of a brushless-DC mo-
tor control application.

Software Requirements

The demonstration is designed to be executed on a Windows machine (32-bit
or 64-bit) with the following software installed:

• PLECS Standalone or Blockset (version 3.7 or higher)
• Keil µVision v5.12 – Download from keil.com.

A license is required to run PLECS and activate the PIL package. You can
request such a license from Plexim at plexim.com. Copy the license file
license.dat that will be supplied to you into the directory in which you have
installed PLECS.

http://keil.com
http://plexim.com

Before You Begin

2

1

Getting Started

This chapter provides a hands-on demonstration of how control-code executing
on a STM32 F4xx device can be tied into a PLECS simulation. More details
about the Processor-in-the-Loop (PIL) concept and how embedded applications
can be enabled for PIL is provided in subsequent chapters.
The project is based on a basic current control application, with the embedded
code controlling the switches of a three-phase inverter powering a brushless
DC machine.

BLDC current control demo model

The sample code is designed to execute on a STM32 F4xx processor with ei-
ther a serial VCP connected to USB or a native serial communication via US-

1 Getting Started

ART. The sample project actually supports the following boards and communi-
cation links:

• STM32F401 Nucleo using a STM32F401RET6 MCU (USART)
• STM32F411 Nucleo using a STM32F411RET6 MCU (USART)
• STM32F4 Discovery using a STM32F407VGT6 MCU (USART/VCP)
• STM32F4 Discovery using a STM32F429ZIT6U MCU (USART/VCP)

Further, the project can simply be adapted to work with other members of the
STM32 F4 family. The pins/ports used for the communication link are shown
in the table below.

VCP via USB USART TX/RX

STM32 F401 Nucleo x GPIO PB6/PB7

STM32 F411 Nucleo x GPIO PB6/PB7

STM32 F407 Discovery CN5 GPIO PB6/PB7

STM32 F407 Discovery CN6 GPIO PB6/PB7

Ports used for the communication link

Note For a communication via USART, an additional USB to Serial Converter
is required.

4

Programming the MCU

Programming the MCU

Connect the CN1 port of the MCU board to your PC. Also connect the commu-
nication cable depending on the desired communication link. Open the Win-
dows Device Manager and confirm the enumeration of a COM port (either
VCP or Serial) and a STLink Dongle.

COM port listed in device manager

The µVision Project containing the embedded code is provided
within the PLECS distribution. Open the Project STM32F4xx-
BLDC_PIL_DEMO.uvprojx and choose the desired MCU and communi-
cation link. Make sure to have the latest version of the PIL Tools installed
(This can be seen in PLECS under File/PLECS Extensions/PIL) and build the
project.

5

1 Getting Started

After a successful build, Program the MCU and press the black Reset but-
ton on the Board. If problems occur during programming, make sure that the
Debug Adapter Port in the ST-Link Debugger Settings is chosen to SW.

Confirm that the green LED is blinking. The LED’s on the different boards
indicate the following system state:

• Blinking Green LED: Algorithm executed (all boards)
• Orange LED: Communication Link ok (only F407 Discovery)
• Red LED: PWM Output stage Active (only F407 and F429 Discovery)
• Blue LED: PIL simulation running (only F407 Discovery)

6

Configuring the PLECS Model

Configuring the PLECS Model

Start PLECS.

PIL Target

We now configure a PIL Target by means of the Target Manager. Open the
target manager using the Windows menu item Target Manager.

Target configuration

Click the + button and provide a name for the target. Next, select the Symbol
file associated with the target by clicking the . . . button. The symbol file cor-
responds to the binary produced by the TI codegen tools. Select BLDC_PIL.elf.

The remaining target configuration is the communication link. Select Serial
from the Device type combo box. Then click on Scan and select the COM
port applied.

Testing the Communication

The target configuration can easily be verified by clicking the Properties but-
ton. This establishes communication with the target and displays diagnostics
information in a new dialog window, as shown below.

7

1 Getting Started

Target properties

Confirm that the symbol file matches the firmware on the target. The Target
mode should be Ready for PIL.

PIL Block

Now open the BLDC_pil model and look under the PIL Control System mask.
Notice how the PIL block has been configured for an external trigger input.
This allows the execution of the PIL block, and associated embedded control
code, to be triggered by the Pulse Generator.

BLDC control subsystem

Double-click on the PIL block. Select the target that you defined in the target
manager from the Target combo box.

8

Configuring the PLECS Model

PIL block general configuration

Activate the Inputs tab and see how the PIL block has been configured for
one input.

9

1 Getting Started

PIL block inputs

This input contains the following multiplexed signals:

• ControlVars.Iset – Direct current set-point (controlled by PI).
• AIn.Idc – DC Current measurement.
• Hall1.Gpio – Hall state for position measurement.

The names of the signals listed above correspond to the variable names in the
embedded code. As explained in subsequent chapters, a variable must be con-
figured as an Override Probe to be used as a PIL block input. Notice how mul-
tiple Override Probes can be multiplexed into one input.

10

Configuring the PLECS Model

PIL block outputs

The PIL block has been further configured for one output (Outputs tab) con-
taining the following signals:

• pwmConf.CCRx – Timer peripheral compare register values.
• pwmConf.ARR – Timer period register.
• pwmConf.OCxM – Timer mode configuration registers.
• pwmConf.CCER – Timer output configuration register.

Again, the signal names correspond to the variable names in the embedded
code. Variables must be configured as a Read Probe (or Override Probe) to be
used as PIL block outputs. Notice how seven Read Probes have been multi-
plexed into the same output.

11

1 Getting Started

Running the PLECS Model

We can now run the simulation by pressing Ctrl-T or selecting Start from the
Simulation menu.

Observe how the embedded control algorithm is maintaining the current flow-
ing through the BLDC coils. Furthermore, see the current dips at the commu-
tation events.

Figure 1.1: PIL Simulation Result

12

2

Processor-in-the-Loop

As a separately licensed feature, PLECS offers support for Processor-in-the-
Loop (PIL) simulations, allowing the execution of control code on external
hardware tied into the virtual world of a PLECS model.

At the PLECS level, the PIL functionality consists of a specialized PIL block
that can be found in the Processor-in-the-loop library, as well as the Target
Manager, accessible from the Window menu. Also included with the PIL
library are high-fidelity peripheral models of MCUs used for the control of
power conversion systems.

On the embedded side, a PIL Framework library is provided to facilitate the
integration of PIL functionality into your project.

Motivation

When developing embedded control algorithms, it is quite common to be test-
ing such code, or portions thereof, by executing it inside a circuit simulator.
Using PLECS, this can be easily achieved by means of a C-Script or DLL
block. This approach is referred to as Software-in-the-loop (SIL). A SIL sim-
ulation compiles the embedded source code for the native environment of the
simulation tool (e.g. Win64) and executes the algorithms within the simulation
environment.

The PIL approach, on the other hand, executes the control algorithms on the
real embedded hardware. Instead of reading the actual sensors of the power
converter, values calculated by the simulation tool are used as inputs to the
embedded algorithm. Similarly, outputs of the control algorithms executing
on the processor are fed back into the simulation to drive the virtual environ-
ment. Note that SIL and PIL testing are also relevant when the embedded
code is automatically generated from the simulation model.

2 Processor-in-the-Loop

One of the major advantages of PIL over SIL is that during PIL testing, ac-
tual compiled code is executed on the real MCU. This allows the detection of
platform-specific software defects such as overflow conditions and casting er-
rors. Furthermore, while PIL testing does not execute the control algorithms
in true real-time, the control tasks do execute at the normal rate between two
simulation steps. Therefore, PIL simulation can be used to detect and ana-
lyze potential problems related to the multi-threaded execution of control algo-
rithms, including jitter and resource corruption. PIL testing can also provide
useful metrics about processor utilization.

How PIL Works

At the most basic level, a PIL simulation can be summarized as follows:

Principle of a PIL simulation

• Input variables on the target, such as current and voltage measurements,
are overridden with values provided by the PLECS simulation.

• The control algorithms are executed for one control period.
• Output variables on the target, such as PWM peripheral register values,

are read and fed back into the simulation.

14

How PIL Works

We refer to variables on the target which are overridden by PLECS as Over-
ride Probes. Variables read by PLECS are called Read Probes.

While Override Probes are set and Read Probes are read the dispatching of
the embedded control algorithms must be stopped. The controls must remain
halted while PLECS is updating the simulated model. In other words, the con-
trol algorithm operates in a stepped mode during a PIL simulation. However,
as mentioned above, when the control algorithms are executing, their behavior
is identical to a true real-time operation. We therefore call this mode of opera-
tion pseudo real-time.

Let us further examine the pseudo real-time operation in the context of an
embedded application utilizing nested control loops where fast high-priority
tasks (such as current control) interrupt slower lower-priority tasks (such as
voltage control). An example of such a configuration with two control tasks is
illustrated in the figure below. With every hardware interrupt (bold vertical
bar), the lower priority task is interrupted and the main interrupt service rou-
tine is executed. In addition, the lower priority task is periodically triggered
using a software interrupt. Once both control tasks have completed, the sys-
tem continues with the background task where lowest priority operations are
processed. The timing in this figure corresponds to true real-time operation.

Control Task 1

Control Task 2

Background Task

1 2 3 4 5 6

Nested Control Tasks

The next figure illustrates the timing of the same controller during a PIL sim-
ulation, with the stop and go symbols indicating when the dispatching of the
control tasks is halted and resumed.

After the hardware interrupt is received, the system stops the control dis-
patching and enters a communication loop where the values of the Override
Probes and Read Probes can be exchanged with the PLECS model. Once a
new step request is received from the simulation, the task dispatching is

15

2 Processor-in-the-Loop

Control Task 1

Control Task 2

Background Task

2 3

STOP

1

STOP STOP

Pseudo real-time operation

restarted and the control tasks execute freely during the duration of one in-
terrupt period. This pseudo real-time operation allows the user to analyze the
control system in a simulation environment in a fashion that is behaviorally
identical to a true real-time operation. Note that only the dispatching of the
control tasks is stopped. The target itself is never halted as communication
with PLECS must be maintained.

PIL Modes

The concept of using Override Probes and Read Probes allows tying actual
control code executing on a real MCU into a PLECS simulation without the
need to specifically recompile it for PIL.

You can think of Override Probes and Read Probes as the equivalent of test
points which can be left in the embedded software as long as desired. Soft-
ware modules with such test points can be tied into a PIL simulation at any
time.

Often, Override Probes and Read Probes are configured to access the registers
of MCU peripherals, such as analog-to-digital converters (ADCs) and pulse-
width modulation (PWM) modules. Additionally, specific software modules, e.g.
a filter block, can be equipped with Override Probes and Read Probes. This
allows unit-testing the module in a PIL simulation isolated from the rest of
the embedded code.

To permit safe and controlled transitions between real-time execution of the
control code, driving an actual plant, and pseudo real-time execution, in con-

16

Configuring PLECS for PIL

junction with a simulated plant, the following two PIL modes are distin-
guished:

• Normal Operation – Regular target operation in which PIL simulations
are inhibited.

• Ready for PIL – Target is ready for a PIL simulation, which corresponds
to a safe state with the power-stage disabled.

The transition between the two modes can either be controlled by the embed-
ded application, for example based on a set of digital inputs, or from PLECS
using the Target Manager.

Configuring PLECS for PIL

Once an embedded application is equipped with the PIL framework, and ap-
propriate Override Probes and Read Probes are defined, it is ready for PIL
simulations with PLECS.

PLECS uses the concept of Target Configurations to define global high-level
settings that can be accessed by any PLECS model. At the circuit level, the
PIL block is utilized to define lower level configurations such as the selection
of Override Probes and Read Probes used during simulation.

This is explained in further detail in the following sections.

Target Manager

The high-level configurations are made in the Target Manager, which is ac-
cessible in PLECS by means of the corresponding item in the Window menu.
The target manager allows defining and configuring targets for PIL simula-
tion, by associating them with a symbol file and specifying the communication
parameters. Target configurations are stored globally at the PLECS level and
are not saved in *.plecs or Simulink files. An example target configuration is
shown in the figure below.

17

2 Processor-in-the-Loop

Target Manager

The left hand side of the dialog window shows a list of targets that are cur-
rently configured. To add a new target configuration, click the button marked
+ below the list. To remove the currently selected target, click the button
marked -. You can reorder the targets by clicking and dragging an entry up
and down in the list.

The right hand side of the dialog window shows the parameter settings of
the currently selected target. Each target configuration must have a unique
Name.

The target configuration specifies the Symbol file and the communication
link settings.

The symbol file is the binary file (also called “object file”) corresponding to the
code executing on the target. PLECS will obtain most settings for PIL simu-
lations, as well as the list of Override Probes and Read Probes and their at-
tributes, from the symbol file.

Communication Links

A number of links are supported for communicating with the target. The de-
sired link can be selected in the Device type combo box. For communication
links that allow detecting connected devices, pressing the Scan button will
populate the Device name combo box with the names of all available devices.

18

Target Manager

Serial Device

The Serial device selection corresponds to conventional physical or virtual
serial communication ports. On a Windows machine, such ports are labeled
COMn, where n is the number of the port.

FTDI Device

If the serial adapter is based on an FTDI chip, the low-level FTDI driver can
be used directly by selecting the FTD2XX option. This device type offers im-
proved communication speed over the virtual communication port (VCP) asso-
ciated with the FTDI adapter.

TCP/IP Socket

The communication can also be routed over a TCP/IP socket by selecting the
TCP Socket device type.

TCP/IP Communication

In this case the Device name corresponds to the IP address (or URL) and
port number, separated by a colon (:).

19

2 Processor-in-the-Loop

TCP/IP Bridge

The TCP Bridge device type provides a generic interface for utilizing custom
communication links. This option permits communication over an external ap-
plication which serves as a “bridge” between a serial TCP/IP socket and a cus-
tom link/protocol.

Target Properties

By pressing the Properties button, target information can be displayed as
shown in the figure below.

Target Properties

In addition to reading and displaying information from the symbol file, PLECS
will also query the target for its identity and check the value against the one
stored in the symbol file. This verifies the device settings and ensures that the
correct binary file has been selected. Further, the user can request for a target
mode change to configure the embedded code to run in Normal Operation
mode or in Ready for PIL mode.

PIL Block

The PIL block ties a processor into a PLECS simulation by making Override
Probes and Read Probes, configured on the target, available as input and out-
put ports, respectively.

20

PIL Block

PIL Block

A PIL block is associated with a target defined in the target manager, which
is selected from the Target combo box. The Configure. . . button provides a
convenient shortcut to the target manager for configuring existing and new
targets.

PIL Block General Tab

The execution of the PIL block can be triggered at a fixed Discrete-Periodic
rate by configuring the Sample time to a positive value. As with other
PLECS components, an Inherited sample time can be selected by setting the
parameter to -1 or [-1 0].

A trigger port can be enabled using the External trigger combo box. This is
useful if the control interrupt source is part of the PLECS circuit, such as an
ADC or PWM peripheral model.

21

2 Processor-in-the-Loop

Typically, an Inherited sample time is used in combination with a trigger
port. If a Discrete-Periodic rate is specified, the trigger port will be sampled
at the specified rate.

Similar to the DLL block, the Output delay setting permits delaying the out-
put of each simulation step to approximate processor calculation time.

Note Make sure the value for the Output delay does not exceed the sample
time of the block, or the outputs will never be updated.

A delay of 0 is a valid setting, but it will create direct-feedthrough between
inputs and outputs.

PIL Block Inputs Tab

The PIL block extracts the names of Override Probes and Read Probes from
the symbol file selected in the target configuration and presents lists for selec-
tion as input and output signals, as shown in the figure above.

The number of inputs and outputs of a PIL block is configurable with the
Number of inputs and Number of outputs settings. To associate Over-

22

PIL Block

ride Probes or Read Probes with a given input or output, select an input/out-
put from the combo box on the right half of the dialog. Then drag the desired
Override Probes or Read Probes from the left into the area below or add them
by selecting them and clicking the > button. To remove an Override Probe or
Read Probe, select it and either press the Delete key or < button.

Note It is possible to multiplex several Override/Read Probe signals into one
input/output. The sequence can be reordered by dragging the signals up and
down the list.

Starting with PLECS 3.7, the PIL block allows setting initial conditions for
Override Probes.

Also new with PLECS 3.7 is the Calibrations tab, which permits modifying
embedded code settings such as regulator gains and filter coefficients.

PIL Block Calibrations Tab

Calibrations can be set in the Value column. If no entry is provided, the em-
bedded code will use the default value as indicated in the Default column.

23

2 Processor-in-the-Loop

24

3

PIL Framework

Plexim provides and maintains PIL Frameworks for specific processor families,
which encapsulate all the necessary embedded functionality for PIL operation.
Using the PIL framework, your C or C++ based embedded applications can be
enabled for PIL with minimal effort.

Currently, such frameworks and associated demo applications are available
for the Texas Instruments (TI) C2000™, ST Microelectronics 32bit F4 and the
Microchip dsPIC33F MCU families. However, support for other platforms can
be developed, as long as the following basic requirements are met:

• The code generation tools (compiler and linker) must be able to generate
binary files of the ELF format containing DWARF debugging information.

• The address width of the processor cannot exceed 32 bit.
• The least addressable unit (LAU) of the processor must be no larger than

16-bit.

Overview

The fundamental operation of a PIL simulation consists of overriding and
reading variables in the embedded application, and synchronizing the exe-
cution of the control task(s) with the simulation of a PLECS model. The PIL
framework therefore provides the following functionality:

• Read Probes for reading the values of variables in the embedded code exe-
cuting on the target and feeding the information into the simulation model.

• Override Probes for overriding variables in the embedded code with values
obtained from the simulation.

• A method to uniquely identify the software executing on the target.
• A remote agent, capable of communicating with PLECS and interpreting

commands related to PIL operation.

3 PIL Framework

• A mechanism for stopping and starting the execution of the control tasks.
• A means to provide configuration parameters to PLECS, such as the com-

munication baudrate.

Starting with PLECS 3.7, the PIL framework also supports Calibrations,
which are embedded–code parameters such as filter coefficients and regula-
tor gains. Calibrations can be modified in the PLECS environment during the
initialization of a PIL simulation and allow running multiple simulations with
different settings without the need for recompiling the embedded code (e.g. for
the tuning of regulators).

PIL Prep Tool

To facilitate defining and configuring PIL probes and calibrations, starting
with PLECS 3.7, a PIL Prep Tool utility is provided as part of the PIL frame-
work.

The PIL Prep Tool parses the embedded code for PIL specific macros, and au-
tomatically generates auxiliary files to be compiled and linked with the em-
bedded code. These auxiliary files contain functions for initializing probes and
calibrations, as well as special symbols which describe to PLECS the scaling
and formatting of the probes/calibrations. The generated files further include
a globally unique identifier (GUID) allowing PLECS to identify the embedded
code.

The PIL Prep Tool must be called as a pre-build step. Its integration into an
embedded project is specific to the compiler and integrated development envi-
ronment (IDE) used. Please refer to the PIL demo projects for more informa-
tion.

Probes

Read Probes

Read Probes are variables in the embedded code which are configured for read
access by PLECS. Any global variable can be configured as a Read Probe by
means of the PIL_READ_PROBE macro. For example, the statement below de-
fines and configures variable Vdc for read access by PLECS.

PIL_READ_PROBE(uint16_t , Vdc, 10, 5.0, "V");

26

Probes

The PIL_READ_PROBE macro results in a simple variable definition, e.g.
uint16_t Vdc, but is also recognized by the PIL Prep Tool, which places the
following statement in the auto generated file:

PIL_SYMBOL_DEF(Vdc, 10, 5.0, "V");

The PIL_SYMBOL_DEF macro expands into the definition of a specially format-
ted and statically initialized helper structure of type const.

typedef struct
{

int q; //!< fixed−point location
float ref; //!< reference value
char *unit; //!< unit string

} pil_var;

const pil_var PIL_V_Vdc = {10, 5.0, "V"}

PLECS searches for PIL_V symbols when parsing the binary file selected in
the target manager, and uses the information of the PIL_V symbols to trans-
late between the raw values stored in the Read Probe and the corresponding
physical value to be used in the simulation.

In the above example, the global variable Vdc is configured as a Q10 with a
reference of 5V. Hence, an integer value of 512 in this variable will be con-
verted by PLECS to 512

210 ∗ 5V = 2.5V.

A fixed point variable can be configured as a unitless number by using a refer-
ence value of 1.0 and setting an empty string (“”) for the unit.

The same approach can be used to configure floating point variables as Read
Probes.

PIL_READ_PROBE(float, MotorSpeed, 0, 1.0, "rpm");

The third parameter of the PIL_READ_PROBE macro, i.e. the fixed point loca-
tion, is ignored with probed floating point variables. However, it is possible to
specify reference values for floating point variables. For example, the macro
below configures MotorSpeed with a reference of 1800 rpm. Hence, a value of
0.5 in this variable will be converted to 0.5 ∗ 1800rpm = 900rpm.

It is also possible to configure structure members, as shown below.

27

3 PIL Framework

struct BATTERY {
PIL_READ_PROBE(int16_t, voltage, 10, 5.0, "V");

};

Override Probes

Override Probes, i.e. variables in the embedded code that can be overridden by
PLECS, are defined with the PIL_OVERRIDE_PROBE macro as illustrated below.

struct BATTERY {
PIL_OVERRIDE_PROBE(int16_t, voltage, 10, 5.0, "V");

};

struct BATTERY MyBattery;

The PIL_OVERRIDE_PROBE macro expands into a variable definition that is aug-
mented by two helper symbols which permit the MyBattery.voltage variable
to be overridden by PLECS.

struct BATTERY {
int16_t voltage;
int16_t voltage_probeV;
int16_t voltage_probeF;

};

While parsing a binary file for symbol information, PLECS detects variables
with matching _probeF and _probeV definitions and identifies those as Over-
ride Probes.

In addition, the PIL Prep Tool will recognize the PIL_OVERRIDE_PROBE macro
and generate the following auxiliary macro as described in the Read Probe
section:

PIL_SYMBOL_DEF(MyBattery_voltage, 10, 5.0, "V");

Note Only variables defined as Override Probes are configurable as inputs for
the PIL block.

28

Probes

An Override Probe is similar to a toggle switch with the following two states:

• Feedthrough – The Override Probe value is provided by the embedded ap-
plication

• Override – The Override Probe value is provided by PLECS

The state of an Override Probe can be switched dynamically at runtime and is
stored in the _probeF helper variable.

With this approach, the same build of the embedded application can be used
to control actual hardware or be tested in a PIL simulation, by simply switch-
ing the mode of Override Probes, without recompiling.

To properly interact with PLECS, the embedded code must access the Over-
ride Probes exclusively by the following set of macros:

Override Probe Macros

Macro Description

INIT_OPROBE(probe) Initializes an Override Probe.
Must be called during the ini-
tialization of the embedded
program.

SET_OPROBE(probe, value) Assigns a value to an Override
Probe.

The PIL Prep Tool will generate a function called PilInitOverrideProbes()
which contains INIT_OPROBE calls for all Override Probes. This function must
be called during the initialization phase of the embedded code before any
Override Probes are used.

If an Override Probe is in the feedthrough state, the value assigned to the
macro is written into probe. Otherwise, the override value supplied by
PLECS is used, which is stored in the _probeV helper variable.

An example for adding Override Probes to existing code is given in the follow-
ing two listings.

29

3 PIL Framework

Battery.voltage = measureBattVolt();

PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
&ControlVars.Id, &ControlVars.Iq, \
ControlVars.fluxPosSin, ControlVars.fluxPosCos);

Original code without use of Override Probes

Assume that during PIL simulations, we would like to override the vari-
able Battery.voltage as well as the values of ControlVars.Id and
ControlVars.Iq. While the battery voltage is updated by a simple write ac-
cess, the Id and Iq variables are modified by the PLX_VECT_parkRot(...) func-
tion via pointers, which need special handling for the SET_OPROBE macro inte-
gration.

The next listing illustrates how SET_OPROBE is properly used in this example.

SET_OPROBE(Battery.voltage, measureBattVolt());

int16_t id, iq;

PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
&id, &iq, \
ControlVars.fluxPosSin, ControlVars.fluxPosCos);

SET_OPROBE(ControlVars.Id, id);
SET_OPROBE(ControlVars.Iq, iq);

Use of Override Probes

For the battery voltage, the assignment can simply be replaced by the
SET_OPROBE macro. For the Id and Iq values, auxiliary variables are used,
updated by the PLX_VECT_parkRot(...) function, and subsequently assigned
to the Override Probes.

Note The SET_OPROBE macro must be used whenever a value is assigned to an
Override Probe. A direct assignment using the equal (=) statement will result in
unpredictable behavior.

30

Calibrations

Calibrations

Calibrations are variables used to configure algorithms in the embedded code,
such as filter coefficients, thresholds, timeouts and regulator gains.

The PIL framework provides the PIL_CALIBRATION macro for a convenient def-
inition of such calibrations. For example, the statement below declares and
configures variable Kp as a PIL calibration.

PIL_CALIBRATION(int16_t, Kp, 10, 5.0, "Ohm", 0, 10.0, 0.5);

The first five parameters of the PIL_CALIBRATION macro are identical to the
definition of a Read Probe. Accordingly, the macro expands into a simple vari-
able definition uint16_t Kp.

The additional three parameters define the allowable range of values for the
Calibration as well as its default value.

In the above example, the allowable range for Kp is 0 – 10Ω. Upon initializa-
tion, Kp is set to 0.5Ω.

The PIL_CALIBRATION macro is interpreted by the PIL Prep Tool to gener-
ate a PIL_SYMBOL_CAL_DEF macro. Similar to PIL_SYMBOL_DEF, this macro
produces the necessary information for PLECS to properly interpret and
handle the calibration. The PIL Prep Tool also generates a function called
PilInitCalibrations() which sets all Calibrations to default values. This
function must be called during the initialization phase of the embedded code
before any calibrations are used. It is also important that this function be
called in the PIL_CLBK_TERMINATE_SIMULATION callback to revert changes
made during a PIL simulation.

Code Identity

PLECS accesses Override Probes, Read Probes and Calibrations by address
(as opposed to name). The PIL block extracts the address of a given variable
from the debugging information contained in the binary file supplied to the
Target Manager. It is therefore important to ensure the selected binary file
matches the code that is actually executing on the target, or erroneous mem-
ory locations will be accessed. This is achieved by comparing a globally unique

31

3 PIL Framework

identifier (GUID) stored in the binary file with the value reported by the tar-
get. PLECS performs this check at the beginning of a simulation, as well as
when the PIL block is opened. As explained in section “Target Manager” (on
page 17), the target manager can be used to verify the match of the selected
binary file.

The GUID is generated at compile time by the PIL Prep Tool. Additionally,
macros for the compile time, and log-on name of the person who compiled the
code are created.

#define CODE_GUID {0xA8,0x45,0x11,0xDE,0x05,0x4C,0xAC,0x41}
#define COMPILE_TIME_DATE_STR "Sun May 30 10:11:43 2010"
#define USER_NAME "john doe"

The value of CODE_GUID is passed to the PIL framework during initialization;
see “Framework Configuration” (on page 43). The value must also be assigned
to the PIL_D_Guid constant as follows:

PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);

The other two macros can be used for diagnostics purposes using PIL con-
stants, as demonstrated in section “Configuration Constants” (on page 44).

Remote Agent

The remote agent services the communication link with PLECS and processes
commands received from PLECS to access Override Probes and Read Probes,
and to step the control code during a PIL simulation.

The remote agent supports both parallel and serial communications, but is
agnostic of the hardware specific details of the communication link.

The user of the PIL framework is responsible for implementing the driver for
a specific communication link, i.e. for configuration of hardware and basic re-
ception and transmission of data.

32

Remote Agent

Communication Callbacks

The PIL framework interacts with the application specific communication
driver by communication callback functions. Two callbacks exist:
• CommCallback() – Called at each system interrupt from

PIL_beginInterruptCall().
• BackgroundCommCallback() – Periodically called from

PIL_backgroundCall().
A given communication link might use either or both callbacks for its imple-
mentation. For implementing serial or parallel data exchange with the frame-
work, the user needs to utilize the input and output functions presented in the
following sections. The callback functions are registered with the framework
as described on page 43.

Serial Communication

For serial communication, the remote agent utilizes a simple network layer
with message framing and error checking, making the protocol suitable for a
wide range of links such as RS-232, RS-485, TCP/IP and CAN.
To ensure no characters are dropped during a serial communication, the Comm-
Callback() from the interrupt should be used to service the link.
A typical implementation of a serial communication callback is shown in the
SCI callback listing.
Notice the use of the following two functions:
• PIL_RA_serialIn(...) – For the reception of characters.
• PIL_RA_serialOut(...) – For the transmission of characters.

Parallel Communication

For parallel communication, complete messages are directly exchanged with
the framework as 16-bit integer arrays. The parallel link does not utilize any
framing or checksum. This link is therefore suited for exchanging messages
via shared memory where risk of transmission errors is negligible.
Parallel communications are typically serviced by the callback made from the
background loop.
• PIL_RA_parallelIn(...) – For the reception of a message.
• PIL_RA_parallelOut(...) – For the transmission of a message.

33

3 PIL Framework

void SCIPoll()
{

while(SciaRegs.SCIFFRX.bit.RXFFST != 0)
{
// a character has been received
PIL_RA_serialIn((int16)SciaRegs.SCIRXBUF.all);

}

int16_t ch;
if(SciaRegs.SCICTL2.bit.TXRDY == 1)
{
// link is ready for transmission
if(PIL_RA_serialOut(&ch))
{
SciaRegs.SCITXBUF = ch;

}
}

}

SCI callback

Framework Integration and Execution

Principal Framework Calls

The PIL framework provides the following two principal functions which must
be called periodically by the embedded application to enable PIL functionality:

• PIL_beginInterruptCall() – Framework call from interrupt.
• PIL_backgroundCall(...) – Framework call from background loop.

The PIL_beginInterruptCall() must be added at the beginning of the main
interrupt service routine, while the PIL_backgroundCall(...) is called peri-
odically from the background task.

The actions performed by those calls depends on whether a PIL simulation is
running or not.

In the following, the concept of the PIL integration is further explained for a
system with nested control tasks (see code snippet below).

In this example, the first control task is triggered by a hardware interrupt re-
lated to the system counter. A divider is used to dispatch a second, lower pri-
ority task. When the divider reaches a specified value, the second control task
is dispatched by a software interrupt.

34

Framework Integration and Execution

/**
* Main interrupt routine

*/
Void TickFxn(UArg arg)
{

PIL_beginInterruptCall();

// fast control task
ControlTask1();

// slow control task
divider++;
if(divider == TASK2_PERIOD)
{
divider = 0;
Swi_post(Swi);

}
}

/**
* Software interrupt for slow control task

*/
Void SwiFxn(UArg arg0, UArg arg1)
{

ControlTask2();
}

/**
* Background task

*/
Void BackgroundTaskFxn(Void)
{

PIL_backgroundCall();
}

Control Task Dispatching

35

3 PIL Framework

Real-time Pseudo Real-time

PIL_beginInterruptCall CommCallback CommCallback
BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

PIL_backgroundCall BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

N/A

Mode-specific actions during framework execution

Assuming the slow task takes longer than a hardware interrupt period, the
second control task is interrupted several times before its execution is fin-
ished.

Now let us examine the operation of the framework in both real-time and
pseudo real-time mode.

The figure on page 36 shows the framework operation in non-PIL (real-time)
mode.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

CommCallback

PIL_backgroundCall

PIL framework during real-time operation

At the beginning of the hardware interrupt service routine, the
PIL_beginInterruptCall() is executed, which, in real-time mode, only calls

36

Framework Integration and Execution

the registered CommCallback function. As already mentioned, this callback
should be used to service the link for a serial communication to ensure no
characters are dropped.

Note During real-time operation, the PIL framework must have a minimal
influence on the timing of the dispatched control tasks. Therefore the Comm-
Callback function must be implemented as efficiently as possible.

As its name suggests, PIL_backgroundCall(...) function is executed from the
background loop, which in turn calls the BackgroundCommCallback(), if con-
figured. The PIL_backgroundCall(...) also parses incoming messages that
are buffered by the communication callback functions, and processes PIL com-
mands.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PILCLBK_STOP_TIMERS CLBK_START_TIMERS

PLECS Step

Communication loop

STOP

PIL framework during pseudo real-time operation

The next figure shows the system behavior during a PIL simulation, i.e. in
pseudo real-time mode, where control task execution is paced and synchro-
nized with the simulation of a PLECS model.
At the start of the hardware interrupt service routine, the task dispatching
stops and the system enters a communication loop.

37

3 PIL Framework

In this loop, both communication callbacks and the command parsing func-
tions are executed. This is different from true real-time mode, where the back-
ground communication callback and the command parsing functions are called
from the background loop.

Once a request for a new control step is received, the framework resumes
the control task dispatching and continues in free mode until the next
hardware interrupt occurs. Note that in pseudo real-time operation, the
PIL_backgroundCall() has no effect.

Control Callback

The transition between different operating modes as well as the pseudo real-
time operation require application-specific actions, implemented by means of a
Control Callback.

For example, when entering the Ready for PIL mode, the power actua-
tion must be turned off, e.g. by disabling the PWM outputs. Also, during
a PIL simulation the peripherals providing the timing to the control algo-
rithms must be stopped and restarted, as indicated by the arrows labeled
PIL_CLBK_STOP_TIMERS and PIL_CLBK_START_TIMERS.

These control actions are provided by a single callback function registered dur-
ing the framework initialization, and subsequently executed with an argument
specifying the specific action to be taken.

Consequently, the implementation of this callback typically consists of a
switch statement as shown below:

The following control-callback actions are defined and called during the frame-
work execution:

• PIL_CLBK_ENTER_NORMAL_OPERATION_REQ – Called when the target mode
“Normal Operation” has been requested. The application must indicate that
it has entered normal operation by executing PIL_inhibitPilSimulation().

• PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ – Called when the target mode
“Ready for PIL” has been requested. The application must confirm that it
is ready for PIL simulations by executing PIL_allowPilSimulation().

• PIL_CLBK_PREINIT_SIMULATION – Called before transitioning to a PIL simu-
lation. Can be used to reconfigure task dispatching, for example if an MCU
coprocessor such as the TI CLA is to be tied into the PIL loop. Interrupts
are disabled when this call is made.

38

Framework Integration and Execution

void PilCallback(PIL_CtrlCallbackReq_t aCallbackReq)
{
switch(aCallbackReq)
{

case PIL_CLBK_STOP_TIMERS:
//application specific code
break;

case PIL_CLBK_START_TIMERS:
//application specific code
break;
.
.
.

default:
//catching an undefined callback
break;

}
}

• PIL_CLBK_INITIALIZE_SIMULATION – Called at the beginning of a PIL simu-
lation. Used to reset the controller(s) and control task dispatching to initial
conditions.

• PIL_CLBK_TERMINATE_SIMULATION – Called at the end of a PIL simulation.
• PIL_CLBK_STOP_TIMERS – Called at the beginning of the control interrupt

when in PIL mode (pseudo real-time operation). Used to stop all timers and
counters related to the control tasks.

• PIL_CLBK_START_TIMERS – Called immediately before resuming the control
task(s) when in PIL mode (pseudo real-time operation). Used to restart all
timers and counters related to the control tasks.

In the following sections, the different actions are further described in context
of when they are called during the operation of the PIL framework. Please
also review the example projects provided by Plexim for further details and
control callback implementation examples.

Target Mode Switching

As described in the section “PIL Modes” (on page 16) the PIL framework dis-
tinguishes between the two target modes.

In Normal Operation mode, the target executes in true real-time operation
driving the load with an active power stage. PIL simulations are inhibited

39

3 PIL Framework

Normal Operation

do/Realtime Application

Ready for PIL

do/wait for start of PIL Simulation

PIL_allowPilSimulation() PIL_inhibitPilSimulation()

PIL_requestNormalMode
-> PIL_CLBK_ENTER_NORMAL_OPERATION_REQ

PIL_requestReadyMode
-> PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ

PIL target modes and mode change requests

in this mode due to the power stage being active. A PIL simulation can only
be started if the target is in Ready for PIL mode, which corresponds to a safe
state in which the power stage is disabled. As explained in the prior section,
the code for enabling or disabling the power stage is application specific and
must be provided by the user via the corresponding control callback.
A target mode change can be requested either from the Target Manager or
from the embedded application. Depending on the requested mode, the frame-
work executes the appropriate callback. If the requested mode is equal to the
current mode or while a PIL simulation is active, a mode request has no ef-
fect.
Target mode change requests are confirmed by the application code by calling
the PIL_allowPilSimulation() and PIL_inhibitPilSimualtion() functions.
Those functions also have no effect while a PIL simulation is active. Please
refer to the example projects provided by Plexim for further details and imple-
mentation examples.

Simulation Start and Termination

When running multiple PIL simulations and comparing results it is impor-
tant that all simulation-runs begin with identical initial conditions. This is

40

Framework Integration and Execution

achieved by means of the PIL_CLBK_INITIALIZE_SIMULATION request, which is
issued via the control callback at the beginning of a simulation.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Wait for 1. PIL Block Evaluation

First Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_INITIALIZE_SIMULATION

Start of PIL Simulation

Sending Initial Read Probe values

Start of a PIL Simulation

Note The initial conditions of Read Probes are fed into the PLECS model at
simulation time t=0. However, these values will be immediately modified if the
PIL block is also triggered at time t=0 and the output delay of the block is set to
zero.

At the end of a PIL simulation, a PIL_CLBK_TERMINATE_SIMULATION request is
issued prior to returning to real-time operation.

Control Dispatching

During a PIL simulation, the target operates in a pseudo real-time fashion
with the execution of the control tasks being paced and synchronized with the
simulation.
In the example shown in the next figure, the interrupt for Control Task 1 is
based on the period of a hardware timer. Therefore, the timer period directly
determines the amount of time available for the execution of the control tasks
until the next interrupt occurs.

41

3 PIL Framework

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Last Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_TERMINATE_SIM

Sending Final Read Probes PIL Simulation Finished PIL_CLBK_START_TIMERS

End of a PIL Simulation

Control Task 1

Control Task 2

Background Task

1 2 3

Timer Counter

4 5 6

Real-time operation with timer

To preserve the timing integrity in stepped mode, the hardware timer needs
to be halted at the beginning of the communication loop and resumed when a
step request is received, resulting in pseudo real-time operation.

By means of the CLBK_STOP_TIMERS and CLBK_START_TIMERS callback
actions, the user is able to provide the necessary functionality specific to the
actual application.

42

Framework Configuration

Control Task 1

Control Task 2

Background Task

Timer Counter

2 3

STOP

1

STOP STOP

Pseudo real-time operation with periodically stopped timer

Task Synchronization at Start of Simulation

When control algorithms are distributed over multiple (nested) tasks, it is im-
portant to synchronize the start of a PIL simulation with the sequencing of
the control tasks. In other words, after a PIL simulation has been started, a
predictable and repeatable amount of time should elapse until the first execu-
tion of each nested task.

Such synchronization can be achieved by actively resetting the task dispatcher
when the PIL_CLBK_INITIALIZE_SIMULATION request is received, as illustrated
below.

Framework Configuration

The initialization and configuration of the PIL framework consists of three
mandatory steps as well as a number of optional configurations.

• PIL_init() – Must be executed before any calls to the framework are made.
• PIL_setLinkParams(...) – Specifies the GUID to the framework and regis-

ters the interrupt callback for communication.
• PIL_setCtrlCallback(...) – Registers the control callback for PIL simula-

tions.

43

3 PIL Framework

void PilCallback(PIL_CtrlCallbackReq_t aCallbackReq)
{
switch(aCallbackReq)
{

case PIL_CLBK_INITIALIZE_SIMULATION:
//application specific code
...
//active synchronization of control task dispatching
divider = TASK2PERIOD −1;
break;
.
.
.

default:
//catching an undefined callback
break;

}
}

Active task synchronization via simulation initialization callback

PIL_init();
PIL_setLinkParams(\

(unsigned char*)&PIL_D_Guid[0], \
(PIL_CommCallbackPtr_t)SCIPoll

);
PIL_setCtrlCallback((PIL_CtrlCallbackPtr_t)PilCallback);

Optional configurations are as follows:

• PIL_setNodeAddress(...) – Configures node address for multi-drop serial
communications.

• PIL_setBackgroundCommCallback(...) – Registers the background commu-
nication callback.

Configuration Constants

The PIL_CONST_DEF macro is used for making settings and diagnostics infor-
mation available to PLECS. At a minimum, Guid[] must be defined. If a se-
rial link is used for communication between PLECS and the target, then it is
also necessary to specify to PLECS the communication rate by means of the

44

Initialization Constants

BaudRate definition. Optionally, further constants can be defined as shown be-
low.

PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);
PIL_CONST_DEF(unsigned char, CompiledDate[], COMPILE_TIME_DATE_STR);
PIL_CONST_DEF(unsigned char, CompiledBy[], USER_NAME);

PIL_CONST_DEF(uint32_t, BaudRate, BAUD_RATE);
PIL_CONST_DEF(uint16_t, StationAddress, 0);
PIL_CONST_DEF(char, FirmwareDescription[], "Demo project");

Note Depending on the build settings it might be necessary to provide specific
compiler/linker instructions (e.g. #pragma RETAIN) to prevent PIL definitions
and constants that are not referenced by the code from being removed from the
binary file.

Initialization Constants

The PIL framework also provides a mechanism to define “Initialization Con-
stants” (or “Configurations”) that can be read from the symbol file at the be-
ginning of a simulation and used to configure the PLECS circuit.

PIL_CONFIG_DEF macro is used for defining such constants. They must be of
integer or float type. Strings and arrays are not supported.

PIL_CONFIG_DEF(uint32_t, SysClk, SYSCLK_HZ);
PIL_CONFIG_DEF(uint32_t, PwmFrequency, PWM_HZ);
PIL_CONFIG_DEF(uint32_t, ControlFrequency, CONTROL_HZ);
PIL_CONFIG_DEF(uint16_t, ProcessorPartNumber, 28069);

To retrieve the values of the initialization constants in PLECS use the
plecs(’get’, ’path to PIL block’, ’InitConstants’) command either in a
m-file or in the model initialization commands.

45

3 PIL Framework

initConstants = plecs('get','./PIL','InitConstants');

Processor = initConstants.ProcessorPartNumber;
SysClk = initConstants.SysClk;
Fs = initConstants.ControlFrequency;
Fpwm = initConstants.PwmFrequency;

46

4

STM32 F4xx Peripheral Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical
user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

4 STM32 F4xx Peripheral Models

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

48

System Timer for PWM Generation (Output Mode)

System Timer for PWM Generation (Output Mode)

The PLECS peripheral library provides two blocks for the STM32 F4 system
timer used in output mode. One block has a register-based configuration mask
and a second block features a GUI. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during a simulation and correspond to the
configurations which the embedded software uses during the initialization
phase. Inputs are dynamically changeable while the simulation is running.
The fixed configuration can be entered either using a register-based approach
or a GUI, while the dynamic values supplied at the inputs must correspond to
raw register values. The figure below shows the block and its parameters for
the register-based version.

Register-based Timer model for output mode

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

49

4 STM32 F4xx Peripheral Models

Timer Subtypes

The STM32 F4 MCU’s provide several subtypes of timers which can be used
for input capture, output compare and PWM generation functionalities. In the
presented model, all subtypes listed below are combined in one module and
can be chosen via the component mask:

• 4 Channel 16bit Advanced Timer
• 4 Channel 32bit General Purpose Timer
• 4 Channel 16bit General Purpose Timer
• 2 Channel 16bit General Purpose Timer
• 1 Channel 16bit General Purpose Timer

The focus of this model is the timer output behavior meaning that all input
functionalities are disregarded. This corresponds to the hardware behavior
with all TIM_CCMRx.CCyS cells being set to 00. Further, the One-Shot mode
of the module is not supported. In the following sections, the common part of
all subtypes is explained together with the models limitations. Further, the
differences between the subtypes are described in more detail.

General Counter Behavior

The base of all timer modules is an auto-reload counter driven by a prescaled
counter clock CK_CNT. The period of this time base clock is determined by
the counter clock frequency CK_PSC and the prescaler register TIM_PSC,
both configurable in the mask, as follows:

TCK_CNT =
TIM _PSC + 1

CK_PSC
The counter either operates in Edge-aligned mode with configurable direction
or in Center-aligned mode. In addition to the general counter functionality,
the module also generates output compare interrupt flags when the counter
matches the values stored in the CCRx registers. Those flags are later used to
determine the output levels of the timer module.

Edge-aligned mode

In upcounting direction, the counter counts from 0 to the counter period value
TIM_ARR and generates an update event UEV simultaneous to the counter
overflow.

50

System Timer for PWM Generation (Output Mode)

Edge-aligned mode / Upcounting [1]

In downcounting direction, the counter counts from TIM_ARR to 0 and gener-
ates an update event (UEV) simultaneous to the counter underflow.

Edge-aligned mode / Downcounting [1]

In Edge-aligned mode, the counter period and therefore the PWM period is
calculated as:

TPWM = TCK_CNT · (TIM _ARR + 1)

Center-aligned mode

In this mode, the counter alternates its direction and generates an update
event (UEV) at the counter under- and overflow. In the model, the counter al-
ways starts in upcounting direction.

Center-aligned mode [1]

51

4 STM32 F4xx Peripheral Models

For Center-aligned mode, the PWM period is calculated as:

TPWM = TCK_CNT · 2 · TIM _ARR

For all modes, the timer model operates in preloaded mode, meaning that the
used configuration is updated simultaneously to the update events. The Repe-
tition Counter functionality is not supported in the model.

Events used for configuration update [1]

In other words, all input terminals of the model, except the CCER register, are
sampled with the instants of the update events.

The timer mode, direction and output compare flag behavior can be set jointly
using the TIM_CR1 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CEN
8

Reserved UDISCKD ARPE CMS DIR OPM URS

Timer Mode Configuration

The CKD field only has an effect on the subtypes with PWM dead time gener-
ation and is therefore described in a later section. The register cell CMS can
be used to determine the counter mode and the output compare flag behavior.

• 00 - Edge-aligned mode
• 01 - Center-aligned mode 1 - compare flags only set when counting down
• 10 - Center-aligned mode 2 - compare flags only set when counting up
• 11 - Center-aligned mode 3 - compare flags set when counting up and down

In Edge-aligned mode, the DIR bit determines the counter direction.

• 0 - Upcounting
• 1 - Downcounting

52

System Timer for PWM Generation (Output Mode)

The module assumes the timer as always active and to be operated in
preloaded mode with the update event generation always enabled. There-
fore, the following settings are mandatory when using the register-based ver-
sion.

• TIM_CR1.ARPE = 1

• TIM_CR1.UDIS = 0

• TIM_CR1.CEN = 1

Interrupt Flags

The timer module can generate interrupt flags at the CCxIF and UIF output
terminals. Those flags are based on the counter compare and update event
flags and can be used in the model to, i.e., trigger an ADC conversion or a new
control step via the PIL block. Note that in the model those flags are imple-
mented as pulses.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

UIE
8

CC1IECC2IECC1DE
CC3IE

CC4IECOMIETIEBIEUDECC2DECC3DECC4DECOMDETDERes.

Interrupt enable register

The interrupt flags can be enabled with the bits of the TIM_DIER regis-
ter.

• 0 - interrupt disabled
• 1 - interrupt enabled

Note Only the four channel subtype implementations make use of all CCxIE
fields.

53

4 STM32 F4xx Peripheral Models

Output Mode Controller

The output-mode controller generates up to 4 reference signals OCyREF based
on the output compare flags of the counter.

Output Mode Controller for OCyREF [1]

The controller implements several output modes defining the behavior of
OCyREF. With the register fields TIM_CCMRx.OCyM, the mode of each ref-
erence signal can be specified separately.

• 000 - Frozen, comparisons have no effect on OCyREF
• 001 - Active match mode, OCyREF forced high when CTR = CCRy

• 010 - Inactive match mode, OCyREF forced low when CTR = CCRy

• 011 - Toggle mode, OCyREF toggled when CTR = CCRy

• 100 - Force inactive mode, OCyREF always forced low
• 101 - Force active mode, OCyREF always forced high
• 110 - PWM Mode 1
• 111 - PWM Mode 2

Because the reference signal mode is supposed to be changed during simula-
tion, the OCyM fields can be accessed via the input terminals. Note that those
are also updated with the update events generated by the timer.

The hardware options to externally clear the reference signal are not sup-
ported in the model. Further, the break function of the timer is not part of the
model assuming the flag BDTR.MOE is always set. Therefore it is mandatory
to set MOE to 1 while using the resister-based version.

54

System Timer for PWM Generation (Output Mode)

The options available in the output stage majorly depend on the timer subtype
and therefore are discussed in the subsequent sections. The configuration of
all output stages is done with the CCER register.

Note The CCER is accessed via the input terminals and is not preloaded.
This means that a change on the CCER input directly effects the outputs.

55

4 STM32 F4xx Peripheral Models

4 channel Advanced Timer

The Advanced Timer consists of a timer and a 4 channel output stage. The
timer has a width of 16-bit and can be operated in Edge-aligned (up and
down) as well as Center-aligned mode. For channels 1 to 3, the output stage
enables complementary outputs with dead time and configurable polarity.

Output stage of Advanced Timer (channel 1 to 3) [1]

For channel 4, the output stage shown below only supports configurable polar-
ity.

Output stage of Advanced Timer (channel 4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

56

System Timer for PWM Generation (Output Mode)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPReserved

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxRef
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channels 1 to 3. The
table below shows this for both outputs operated with equal polarity.

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxRef, OCxN inactive

1 0 OCx inactive, OCxN = OCxRef

1 1 Complementary output mode with dead time

The dead time for each positive flank in OCx and OCNx is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

57

4 STM32 F4xx Peripheral Models

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

This subtype implementation uses the full set of inputs, outputs and configu-
ration registers.

4 channel General Purpose Timer

This subtype is available with a 16-bit or 32-bit counter implementation both
supporting Edge-aligned (up and down), as well as Center-aligned modes. The
4 channel output stage shown below only supports configurable polarity.

Output stage of general purpose timer (channel 1/4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC3ECC4E CC2PCC3PCC4P CC2NPCC3NPCC4NP Res. Res. Res. Res.

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)

58

System Timer for PWM Generation (Output Mode)

• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxRef
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CCxNP bits have no effect on the model.

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR4, ARR,
CCER, OC1M - OC4M

x

Output OC1 - OC4, CC1IF-
CC4IF, UEV

OC1N - OC3N

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• GPIO Mode for unused outputs

59

4 STM32 F4xx Peripheral Models

2 channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The 2 channel output stage shown below only supports configurable
polarity.

Output stage of general purpose timer (channel 1/2) [1]

The CCER register can be used to configure both channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC2PCC2NPReserved Res. Res.

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxRef
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CCxNP bits have no effect on the model.

60

System Timer for PWM Generation (Output Mode)

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR2, ARR,
CCER, OC1M - OC2M

CCR3 - CCR4, OC3M-
OC4M

Output OC1 - OC2, CC1IF -
CC2IF, UEV

OC3 - OC4, OC1N -
OC3N, CC3IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• TIM_DIER.CC3IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

1 channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The single channel output stage shown below only supports config-
urable polarity.

Output stage of general purpose timer (channel 1/1) [1]

61

4 STM32 F4xx Peripheral Models

The CCER register can be used to configure single channel output stage.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPReserved Res.

Configuration of the output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxRef
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CC1NP bit has no effect on the model.

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1, ARR, CCER,
OC1M

CCR2 - CCR4, OC2M-
OC4M

Output OC1, CC1IF, UEV OC2 - OC4, OC1N -
OC3N, CC2IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• TIM_DIER.CC2IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

62

System Timer for PWM Generation (Output Mode)

GPIO Mode

In case that an output enable circuit is configured as inactive, the output level
is determined by the GPIO Mode. To mimic this in the simulation model, the
parameter GPIO Mode is available in the register-based version.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

OC1
8

OC1NOC2N OC2OC3OC3NOC4Reserved

Configuration of GPIO Mode

With the bits OCx and OCxN, the corresponding output mode can be set.

• 0 - Pull-Down (Inactive Low)
• 1 - Pull-Up (Inactive High)

Note This Register is available only in the simulation.

63

4 STM32 F4xx Peripheral Models

Analog-Digital Converter (ADC)

The PLECS peripheral library provides two blocks for the STM32 F4 single
ADC module, one with a register-based configuration mask and a second with
a GUI. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• T_REG,T_INJ - input ports to trigger ADC conversions
• ADC_INx - input measurement channels
• ADC_DR - auto-size output port to access regular conversion results
• ADC_JDR - auto-size output port to access injected conversion results
• xEOC_INT - output ports for subsequent logic triggered by a conversion end
• ADC_Active - output port indicating an active conversion

64

Analog-Digital Converter (ADC)

ADC Module Overview

The PLECS single ADC model contains the most relevant features of the
MCU peripheral.

Overview of the STM F4 ADC module [1]

65

4 STM32 F4xx Peripheral Models

The ADC model implements these logical submodules:

• ADC Converter with Result Registers for Injected and Regular conversion
• ADC Sample Logic for Single, Scan and Discontinuous mode
• ADC Interrupt Logic

For simplicity, the external trigger configuration shown in the figure above is
neglected. The trigger to the regular and injected channels are directly ac-
cessed via the corresponding input terminals. Further, the Analog Watchdog
functionalities as well as the Watchdog and DMA overrun interrupts are not
part of the model. Due to simulation efficiency reasons, the ADC can not be
operated in continuous conversion mode.

ADC Converter with Result Registers

The ADC module contains a converter with configurable resolution. An exter-
nal voltage reference is used which can be defined in the component mask.

The period of an ADC clock, and therefore the time base for the module, is de-
termined based on PCLK2 and the clock divider specified in the ADC_CCR
register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

MULTI

171819202122232425262728293031

8

ReservedDELAYRes.DDSDMA

ADCPREReservedVBATETSVREFEReserved

ADC_CCER Register structure

By using the ADCPRE bits the ADC time base can be specified as follows:

ADCPRE[1] ADCPRE[0] ADC clock

0 0 PCLK2 / 2

0 1 PCLK2 / 4

1 0 PCLK2 / 8

1 1 PCLK2 / 16

66

Analog-Digital Converter (ADC)

The resolution of the converter can be specified with the fields RES of the
ADC_CR1 register given in the next section. This also influences the amount
of ADC clock cycles needed for a conversion. With the RES bits the resolution
can be specified as shown in the table below.

RES[1] RES[0] Resolution Conversion length

0 0 12 bit 15 ADCCLK cycles

0 1 10 bit 13 ADCCLK cycles

1 0 8 bit 11 ADCCLK cycles

1 1 6 bit 9 ADCCLK cycles

For the regular channels, the hardware ADC contains a single 16-bit result
register ADC_DR. The results of multiple, sequential regular group conver-
sions are typically moved to the SRAM on the fly via the DMA controller. To
simplify this, the ADC_DR terminal provides the conversion result for each
of the 16 regular group members separately. For the injected channels, the
ADC_JDR terminal provides access to the contents of all four ADC_JDRx reg-
isters.

The component only supports the right aligned result representation mode
meaning that ADC_CR2.ALIGN always needs to be set to 0. In addition to
this, the model provides an option to represent the conversion results as quan-
tized double integers, which can be chosen with the mask parameter Output
Mode.

ADC Sample Logic

The ADC model supports the single, scan and discontinuous conversion modes
as well as auto-injected conversions. The continuous conversion mode is not
supported due to simulation efficiency reasons. The ADC_CR1 and ADC_CR2
registers can be used to choose and control the used conversion mode.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

AWDCH

171819202122232425262728293031

8

EOCIEAWDIEJEOCIESCANAWDSGLJAUTODISCENJDISCENDISCNUM

ReservedJAWDENAWDENRESOVRIEReserved

ADC_CR1 Register structure

67

4 STM32 F4xx Peripheral Models

The DISCNUM field defines the number of regular channels converted after a
trigger to the regular group was received in discontinuous mode.

DISCNUM Channels converted

000 1 channel

001 2 channels

... ...

110 7 channels

111 8 channels

The bit JDISCEN determines the discontinuous mode for injected channels:

• 0 - Discontinuous mode on injected channels disabled
• 1 - Discontinuous mode on injected channels enabled

With DISCEN, the discontinuous mode can be enabled for regular channels:

• 0 - Discontinuous mode on regular channels disabled
• 1 - Discontinuous mode on regular channels enabled

The bit JAUTO can be used to automatically trigger an injected group conver-
sion after the regular group was finished:

• 0 - Automatic injected group conversion disabled
• 1 - Automatic injected group conversion enabled

Note Be aware that JDISCEN and DISCEN exclude each other and JAUTO
can not be used with discontinuous mode or triggers to the injected group.

With the bit SCAN, the user can activate the scan mode of the component al-
lowing multiple conversion triggered by a single event.

• 0 - Scan mode disabled
• 1 - Scan mode enabled

If none of the bits JDISCEN,DISCEN and SCAN is set, the adc module op-
erates in single conversion mode. The bits JEOCIE and EOCIE are further
described in the interrupt section.

For more information about the different conversion modes please refer to [2].

68

Analog-Digital Converter (ADC)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

ADON

171819202122232425262728293031

8

DMADDSEOCSALIGNReserved

JEXTENJSWSTRTEXTSELReserved SWSTART EXTEN Reserved JEXTSEL

CONTReserved

ADC_CR2 Register structure

The field EOCS configures when the EOC flag is set while not in single con-
version mode.

• 0 - EOC is set at the end of each regular group
• 1 - EOC is set at the end of each single regular conversion

Note The adc model assumes the adc not to operate in continuous conversion
mode and to be always active. Therefore ADC_CR2.CONT needs to be cleared
and ADC_CR2.ADON needs to be set while using the register-based configura-
tion.

For every analog input, the sample time of a conversion can be configured sep-
arately using the ADC SMPRx registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SMP10

Reserved

SMP11SMP12SMP13SMP14SMP15_0

SMP15[2:1]SMP16SMP17SMP18

ADC_SMPRx Register structure

Note that SMP16-SMP18 have no effect because the measurements for the
temperature sensor as well as the internal reference and the battery voltage
are not part of the model. For every other channel, the sampling time can be
configured as follows:

69

4 STM32 F4xx Peripheral Models

SMPx Sampling Time

000 3 cycles

001 15 cycles

010 28 cycles

011 56 cycles

100 84 cycles

101 112 cycles

110 144 cycles

111 480 cycles

The ADC operates as a sequencer which has a maximum sequence of 16 con-
version for the regular group and 4 conversions for the injected group. The
input sampled by each group element as well as the sequence length can be
configured via the ADC_SQRx and the ADC_JSQR registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SQ13

Reserved

SQ14SQ15

SQ16[4:1]

SQ16_0

L

ADC_SQRx Register structure

The length of the regular sequence is defined by the field L.

L Sequence length Converted elements / ADC_DR

0000 1 conversion [SQ1]

0001 2 conversion [SQ1 SQ2]

...

1111 16 conversions [SQ1 SQ2 ... SQ16]

70

Analog-Digital Converter (ADC)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

JSQ1

Reserved

JSQ2JSQ3

JSQ4[4:1]

JSQ4_0

JL

ADC_JSQR Register structure

The length of the injected sequence is defined by the field JL.

JL Sequence length Converted elements / ADC_JDR

00 1 conversion [JSQ4]

01 2 conversion [JSQ3 JSQ4]

...

11 4 conversions [JSQ1 JSQ2 JSQ3 JSQ4]

After the last conversion is finished, the sequencer wraps around and restarts
with the first element after the next trigger was received.

For every sequence element, the sampled input can be specified via the corre-
sponding SQx or JSQx fields as follows:

SQx/JSQx Input

x0000 ADC_IN0

x0001 ADC_IN1

... ...

x1111 ADC_IN15

Note The terminals ADC_DR and ADC_JDR are auto-size output terminals.
This means that the width of the terminals is defined by J or JL as shown in
the upper tables.

71

4 STM32 F4xx Peripheral Models

ADC Interrupt Logic

The ADC module also has a connection to the NVIC of the STM F4 MCU.
The EOC flag is set when either the regular channel or the injected chan-
nel indicates an end of conversion. The JEOC flag is set when the injected
group indicates a finished conversion. The fields ADC_CR1.EOCIE and
ADC_CR1.JEOCIE can be used to configure the adc to provide an interrupt
pulse to the corresponding output terminals.

• 0 - no interrupt pulses are generated at the EOC_INT/JEOC_INT terminal
• 1 - interrupt pulses are generated at the EOC_INT/JEOC_INT terminal

Even if there typically won’t be a model of the NVIC within the simulation,
those pulses can i.e. be used to trigger the PIL block modeling a control step
triggered by a finished adc conversion.

72

Analog-Digital Converter (ADC)

Reference
1 - Literature Source: STM32 Reference Manual [RM0090]

73

4 STM32 F4xx Peripheral Models

74

5

Embedded Application

This chapter provides additional information about the STM32 F4 BLDC Cur-
rent Control demo application.

Opening the uVision Demo Project

The source code of the embedded demonstration project is provided as part of
the PIL Framework installation and can be directly opened in µVision 5.5.

Configuring the Project

The building of the demo project is configured to include custom pre-build and
post-build actions.

At the start of a build, the PIL Prep Tool is called to generate the auxiliary
symbols used by PLECS, as explained in “PIL Prep Tool” (on page 26).

5 Embedded Application

Custom build steps

These additional build steps are configured in the User Commands section
of the project properties (User tab). Both build steps call the batch file named
buildsteps.bat.

Rebuilding the Project

The project can be compiled and flashed by clicking the corresponding symbols
on the toolbar.

After reflashing the MCU with your own project, ensure the PLECS target
manager is pointing to the correct symbol file (located in the Debug folder).

Project Structure

The following is a brief description of the files making up the embedded demo
application.

Initialization and Task Dispatching

The following files contain the routines for initialization of the core, timer
setup, hardware interrupts, software interrupts and tasks.

• main.c/h – Main() routine, hardware and software interrupt routines.
• gpio.c/h – Initialization of inputs and outputs.

76

Project Structure

• adc.c/h – Initialization of adc.
• hall.c/h – Initialization of position measurement.
• pwm.c/h – Initialization/update of power stage.

Control Law

The BLDC control algorithm includes the following functionality:

1 Measurement of dc current.

2 PI current control for dc current.

The files related to the control algorithms are the following:

• calib.c/h – Control calibrations (settings).
• pu.h – Fixed-point reference values.
• macros.h – Macros for fixed-point calculations.
• control.c/h – Control tasks.

Communication Interface

The demo project either utilizes a Virtual Com Port or the serial communi-
cation interface (SCI) for exchanging information with PLECS. This can be
changed by defining the symbol USARTCOMM in main.h.

• sci.c/h – SCI communication driver configured for VCP at the CN5 port or
using the peripheral SCI module (PB7(RX)/PB6(TX). Includes the communi-
cation callback function pollSCI.

PIL Functionality

These files enable the demo application for PIL simulation with PLECS.

• pil.h – PIL framework API.
• sci.c/h – Communication callback function. See “Communication Call-

backs” (on page 33).
• pil_ctrl.c/h – Control callback for stepping the control tasks during a PIL

simulation. See “Control Callback” (on page 38).
• pil_symbols_p.c – Definitions of override and read probe attributes. See

“Probes” (on page 26).

77

5 Embedded Application

• pil_framework_fpu32.lib – PIL framework library, compiled for fpu32
floating point support.

IO Map

Function GPIO

TIM1.CH1 PA8

TIM1.CH2 PA9

TIM1.CH3 PA10

TIM1.CH1N PA7

TIM1.CH2N PB0

TIM1.CH3N PB0

ADC1 Input PA4

Hall A-C PC0-PC2

USART1 TX PB6

USART1 RX PB7

USB VCP PA11 & PA12 (F407)

PB14 & PB15 (F429)

Ports used for BLDC example project

78

electrical engineering software

Plexim GmbH  info@plexim.com  www.plexim.com

User Manual Version 3.4

The simulation platform for
power electronic systems

PLECS

 U
ser M

anual Version 3.4

	Contents
	Software Requirements

	Getting Started
	Programming the MCU
	Configuring the PLECS Model
	PIL Target
	Testing the Communication
	PIL Block

	Running the PLECS Model

	Processor-in-the-Loop
	Motivation
	How PIL Works
	PIL Modes
	Configuring PLECS for PIL
	Target Manager
	Communication Links

	PIL Block

	PIL Framework
	Overview
	PIL Prep Tool
	Probes
	Read Probes
	Override Probes

	Calibrations
	Code Identity
	Remote Agent
	Communication Callbacks
	Serial Communication
	Parallel Communication

	Framework Integration and Execution
	Principal Framework Calls
	Control Callback
	Target Mode Switching
	Simulation Start and Termination
	Control Dispatching
	Task Synchronization at Start of Simulation

	Framework Configuration
	Configuration Constants
	Initialization Constants

	STM32 F4xx Peripheral Models
	Introduction
	System Timer for PWM Generation (Output Mode)
	Timer Subtypes
	General Counter Behavior
	Interrupt Flags
	Output Mode Controller
	4 channel Advanced Timer
	4 channel General Purpose Timer
	2 channel General Purpose Timer
	1 channel General Purpose Timer
	GPIO Mode

	Analog-Digital Converter (ADC)
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Sample Logic
	ADC Interrupt Logic

	Embedded Application
	Opening the uVision Demo Project
	Configuring the Project
	Rebuilding the Project
	Project Structure
	Initialization and Task Dispatching
	Control Law
	Communication Interface
	PIL Functionality

	IO Map

